
© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

9.Quartus II Integrated Synthesis

This chapter documents the design flow and features of the Quartus II software,
including the following topics:

■ Language Support in the Quartus II software

■ How to reduce your synthesis and compilation time

■ Improving synthesis results with the Quartus II synthesis options

■ Controlling the inference of architecture-specific megafunctions

■ Node-naming conventions used during synthesis to help you better understand
your synthesized design and messages issued during synthesis to improve your
HDL code

Scripting techniques for applying all the options and settings described are also
provided.

Introduction
As programmable logic designs become more complex and require increased
performance, advanced synthesis has become an important part of the design flow.
The Quartus® II software includes advanced integrated synthesis that fully supports
VHDL and Verilog HDL, as well as Altera®-specific design entry languages, and
provides options to control the synthesis process. With this synthesis support, the
Quartus II software provides a complete, easy-to-use solution.

This chapter contains the following sections:

■ “Design Flow” on page 9–2

■ “Language Support” on page 9–4

■ “Incremental Compilation” on page 9–19

■ “Quartus II Synthesis Options” on page 9–22

■ “Analyzing Synthesis Results” on page 9–68

■ “Analyzing and Controlling Synthesis Messages” on page 9–69

■ “Node-Naming Conventions in Quartus II Integrated Synthesis” on page 9–73

■ “Scripting Support” on page 9–79

f For examples of Verilog HDL and VHDL code synthesized for specific logic functions,
refer to the Recommended HDL Coding Styles chapter in volume 1 of the Quartus II
Handbook. For information about coding with primitives that describe specific
low-level functions in Altera devices, refer to the Designing With Low-Level Primitives
User Guide.

QII51008-9.1.1

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/ug/ug_low_level.pdf
http://www.altera.com/literature/ug/ug_low_level.pdf

9–2 Chapter 9: Quartus II Integrated Synthesis
Design Flow

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

Design Flow
The Quartus II Analysis and Synthesis stage of the compilation flow runs Quartus II
integrated synthesis, which fully supports Verilog HDL, VHDL, and Altera-specific
languages, and supports major features of the SystemVerilog language (for
information, refer to “Language Support” on page 9–4). In this stage of the
compilation flow, the Quartus II software performs logic synthesis to optimize design
logic and performs technology mapping to implement the design logic in device
resources such as logic elements (LEs) or adaptive logic modules (ALMs), and other
dedicated logic blocks. This stage also generates the single project database that
integrates all the design files in a project (including any netlists from third-party
synthesis tools).

You can use the Analysis and Synthesis stage of the Quartus II compilation flow to
perform any of the following levels of Analysis and Synthesis:

■ Analyze Current File—Parse the current design source file to check for syntax
errors. This command does not report on many semantic errors that require
further design synthesis. To perform this analysis, on the Processing menu, click
Analyze Current File.

■ Analysis and Elaboration—Check a design for syntax and semantic errors and
perform elaboration to identify the design hierarchy. To perform Analysis and
Elaboration, on the Processing menu, point to Start and click Start Analysis &
Elaboration.

■ Analysis and Synthesis—Perform complete Analysis and Synthesis on a design,
including technology mapping. To perform Analysis and Synthesis, on the
Processing menu, point to Start and click Start Analysis & Synthesis. This is the
most commonly used command and is part of the full compilation flow.

The Quartus II design and compilation flow using Quartus II integrated synthesis
consists of the following steps:

1. Create a project in the Quartus II software and specify the general project
information, including the top-level design entity name.

2. Create design files in the Quartus II software or with a text editor.

3. On the Project menu, click Add/Remove Files in Project and add all design files to
your Quartus II project using the Files page of the Settings dialog box.

4. Specify compiler settings that control the compilation and optimization of the
design during synthesis and fitting. For synthesis settings, refer to “Quartus II
Synthesis Options” on page 9–22. Add timing constraints to specify the timing
requirements.

1 If you want to partition your design to reduce compilation time, refer to
“Incremental Compilation” on page 9–19.

5. Compile the design. To just synthesize the design, on the Processing menu, point
to Start, and click Start Analysis & Synthesis. To run a complete compilation flow
including placement, routing, creation of a programming file, and timing analysis,
click Start Compilation on the Processing menu.

6. After obtaining synthesis and place-and-route results that meet your
requirements, program or configure your Altera device.

Chapter 9: Quartus II Integrated Synthesis 9–3
Design Flow

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

The Quartus II software produces netlists that allow you to perform functional
simulation or gate-level timing simulation, timing analysis, and formal verification.

f For more information about Quartus II projects, the compilation flow and other
features in the Quartus II software, refer to the Quartus II Help. For an overall
summary of features in the Quartus II software, refer to the Introduction to the
Quartus II Software manual.

Figure 9–1 shows the basic design flow using Quartus II integrated synthesis.

Figure 9–1. Quartus II Design Flow Using Quartus II Integrated Synthesis

Notes to Figure 9–1:

(1) AHDL stands for the Altera Hardware Description Language.
(2) BDF stands for the Altera schematic Block Design File format (.bdf).
(3) The Quartus II Exported Partition (.qxp) file is a precompiled netlist that can be used as a design source file. For more information, refer to “Quartus

II Exported Partition File as Source” on page 9–21.

No

Gate-Level
Functional
Simulation

Functional/RTL
Simulation

Yes

Timing & Area
Requirements

Satisfied?

Gate-Level Timing
Simulation

Formal Verification
Using Source Code as
Golden Netlist, and VO

as Revised Netlist

Internal
Synthesis

Netlist

Configuration/
Programming
Files (.sof/.pof)

Analysis & Synthesis
Constraints
& Settings

Constraints
& Settings

Fitter Assembler
Timing

Analyzer

Post Synthesis
Simulation File

(.vho/.vo)

Post
Place-and-Route
Simulation Files

(.vho/.vo and .sdo)

Post
Place-and-Route

Formal Verification File
(.vo)

Verilog HDL VHDL AHDL (1) BDF (2)

Configure/Program Device

.qxp file (3)SystemVerilog

http://www.altera.com/literature/manual/intro_to_quartus2.pdf
http://www.altera.com/literature/manual/intro_to_quartus2.pdf

9–4 Chapter 9: Quartus II Integrated Synthesis
Language Support

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

Language Support
This section explains Quartus II integrated synthesis support for HDL, schematic
design entry, graphical state machine entry, and how to specify the Verilog HDL or
VHDL language version used in your design. It also documents language features
such as Verilog HDL macros, initial constructs and memory system tasks, and VHDL
libraries. “Design Libraries” on page 9–12 describes how to compile and reference
design units in different custom libraries and “Using Parameters/Generics” on
page 9–15 describes how to use parameters or generics and pass them between
different languages.

To ensure that the software reads all associated project files, add each file to your
Quartus II project. To add files to your project in the Quartus II GUI, on the Project
menu, click Add/Remove Files In Project. Design files can be added to the project in
any order. You can mix all supported languages and netlists generated by third-party
synthesis tools in a single Quartus II project.

Verilog HDL Support
The Quartus II Compiler’s Analysis and Synthesis module supports the following
Verilog HDL standards:

■ Verilog-1995 (IEEE Standard 1364-1995)

■ Verilog-2001 (IEEE Standard 1364-2001)

■ SystemVerilog-2005 (IEEE Standard 1800-2005) (not all constructs are supported)

f For complete information about specific Verilog HDL syntax features, and language
constructs, refer to the Quartus II Help.

The Verilog HDL code samples provided in this document follow the Verilog-2001
standard unless otherwise specified. The Quartus II Compiler uses the Verilog-2001
standard by default for files that have the extension .v, and the SystemVerilog
standard for files that have the extension .sv.

You can specify a default Verilog HDL version for all files by performing the
following steps:

1. On the Assignments menu, click Settings.

2. In the Settings dialog box, under Category, expand Analysis & Synthesis
Settings, and select Verilog HDL Input.

3. On the Verilog HDL Input page, under Verilog version, select the appropriate
Verilog HDL version, then click OK.

You can override the default Verilog HDL version for each Verilog HDL design file by
performing the following steps:

1. On the Project menu, click Add/Remove Files in Project. The Settings dialog box
appears.

2. On the Files page, select the appropriate file in the list and click the Properties
button.

3. In the HDL Version list, select SystemVerilog_2005, Verilog_2001, or
Verilog_1995 and click OK.

Chapter 9: Quartus II Integrated Synthesis 9–5
Language Support

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

You can also control the Verilog HDL version used to compile the design inside a
design file by using the VERILOG_INPUT_VERSION synthesis directive, as shown in
Example 9–1. This directive overrides the default HDL version and any HDL version
specified in the File Properties dialog box.

The variable <language version> takes one of the following values:

■ VERILOG_1995

■ VERILOG_2001

■ SYSTEMVERILOG_2005

When the software reads a VERILOG_INPUT_VERSION synthesis directive, the
current language version setting changes as specified until the end of the file, or until
the next VERILOG_INPUT_VERSION directive is reached.

1 You cannot change the language version in the middle of a Verilog HDL module.

For more information about specifying synthesis directives, refer to “Synthesis
Directives” on page 9–26.

If you use scripts to add design files, you can use the -HDL_VERSION command to
specify the HDL version for each design file. Refer to “Adding an HDL File to a
Project and Setting the HDL Version” on page 9–80.

The Quartus II software support for Verilog HDL is case-sensitive in accordance with
the Verilog HDL standard. The Quartus II software supports the compiler directive
`define, in accordance with the Verilog HDL standard.

The Quartus II software supports the include compiler directive to include files
with absolute paths (with either “/” or “\” as the separator), or relative paths (relative
to project root, user libraries, or current file location). When searching for a relative
path, the Quartus II software initially searches relative to the project directory. If the
Quartus II software cannot find the file, it then searches relative to all user libraries,
and finally relative to the directory location of the current file.

Verilog-2001 Support
The Quartus II software does not support Verilog-2001 libraries and configurations.

SystemVerilog Support
The Quartus II software supports the following SystemVerilog constructs:

■ Parameterized interfaces, generic interfaces, and modport constructs

■ Packages

■ Extern module declarations

■ Built-in data types logic, bit, byte, shortint, longint, int

■ Unsized integer literals ‘0, ‘1, ‘x, ‘z, ‘X, and ‘Z

■ Structure data types using struct

Example 9–1. Controlling the Verilog HDL Input Version with a Synthesis Directive

// synthesis VERILOG_INPUT_VERSION <language version>

9–6 Chapter 9: Quartus II Integrated Synthesis
Language Support

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

■ Ports and parameters with unrestricted data types

■ User-defined types using typedef

■ Global declarations of task/functions/parameters/types (does not support global
variables)

■ Coding constructs always_comb, always_latch, always_ff

■ Continuous assignments to nodes other than nets, and procedural assignments to
nodes other than reg

■ Enumeration methods First, Last, Next(n), Prev(n), Num, and Name

■ Assignment operators +=, -=, *=, /=, %=, &=, |=, ^=, <<=, >>=, <<<=, and >>>=

■ Increment ++ and decrement --

■ Jump statements return, break, and continue

■ Enhanced for loop (declare loop variables inside initial condition)

■ Do-while loop and local loop constructs

■ Assignment patterns

■ Keywords unique and priority in case statements

■ Default values for function/task arguments

■ Closing labels

■ Extensions to directives ‘define and ‘include

■ Expression size system function $bits

■ Array query system functions $dimensions, $unpacked_dimensions,
$left, $right, $high, $low, $increment, and $size

■ Packed array (include multidimensional packed array)

■ Unpacked array (include single-valued range dimension)

■ Implicit port connections with .name and .*

Quartus II integrated synthesis also parses, but otherwise ignores the SystemVerilog
assertions.

1 Designs written to comply with the Verilog-2001 standard might not compile
successfully using the SystemVerilog setting because the SystemVerilog standard
adds a number of new reserved keywords. For a list of reserved words in each
language standard, refer to the Quartus II Help.

Initial Constructs and Memory System Tasks
The Quartus II software infers power-up conditions from Verilog HDL initial
constructs. The software creates power-up settings for variables, including RAM
blocks. If the Quartus II software encounters non-synthesizable constructs in an
initial block, it generates an error. To avoid such errors, enclose non-synthesizable
constructs (such as those intended only for simulation) in translate_off and

Chapter 9: Quartus II Integrated Synthesis 9–7
Language Support

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

translate_on synthesis directives, as described in “Translate Off and On /
Synthesis Off and On” on page 9–61. Synthesis of initial constructs enables the
power-up state of the synthesized design to match, as closely as possible, the
power-up state of the original HDL code in simulation. For more information, refer to
“Power-Up Level” on page 9–41.

1 Initial blocks do not infer power-up conditions in some third-party EDA synthesis
tools. If you are converting between synthesis tools, ensure that your power-up
conditions are set correctly.

Quartus II integrated synthesis supports the $readmemb and $readmemh system
tasks to initialize memories. Example 9–2 shows an initial construct that initializes an
inferred RAM with $readmemb.

When creating a text file to use for memory initialization, specify the address using
the format @<location> on a new line, then specify the memory word such as 110101
or abcde on the next line. Example 9–3 shows a portion of a memory initialization file
for the RAM in Example 9–2.

Verilog HDL Macros
The Quartus II software fully supports Verilog HDL macros, which you can define
with the 'define compiler directive in your source code. You can also define macros
in the GUI or on the command line.

Setting a Verilog HDL Macro Default Value in the GUI

To specify a macro in the GUI, you must perform the following steps:

1. On the Assignments menu, click Settings.

2. In the Category list, expand Analysis & Synthesis Settings and select Verilog
HDL Input.

3. Under Verilog HDL macro, type the macro name in the Name box, the value in
the Setting box.

Example 9–2. Verilog HDL Code: Initializing RAM with the readmemb Command

reg [7:0] ram[0:15];
initial
begin
$readmemb("ram.txt", ram);
end

Example 9–3. Text File Format: Initializing RAM with the readmemb Command

@0
00000000
@1
00000001
@2
00000010
…
@e
00001110
@f
00001111

9–8 Chapter 9: Quartus II Integrated Synthesis
Language Support

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

4. Click Add.

Setting a Verilog HDL Macro Default Value on the Command Line

To set a default value for a Verilog HDL macro on the command line, use the
--verilog_macro option, as shown in Example 9–4.

The command in Example 9–5 has the same effect as specifying
`define a 2 in the Verilog HDL source code.

To specify multiple macros, you can repeat the option more than once, as in
Example 9–6.

VHDL Support
The Quartus II Compiler’s Analysis and Synthesis module supports the following
VHDL standards:

■ VHDL 1987 (IEEE Standard 1076-1987)

■ VHDL 1993 (IEEE Standard 1076-1993)

■ VHDL 2008 (IEEE Standard 1076-2008)

f For information about specific VHDL syntax features and language constructs, refer
to the Quartus II Help.

The Quartus II Compiler uses the VHDL 1993 standard by default for files that have
the extension .vhdl or .vhd.

1 The VHDL code samples provided in this document follow the VHDL 1993 standard.

To specify a default VHDL version for all files, perform the following steps:

1. On the Assignments menu, click Settings. The Settings dialog box appears.

2. In the Category list, expand Analysis & Synthesis Settings and select VHDL
Input.

3. On the VHDL Input page, under VHDL version, select the appropriate version,
then click OK.

Example 9–4. Command Syntax for Specifying a Verilog HDL Macro

quartus_map <Design name> --verilog_macro= "<Macro name>=<Macro setting>" r

Example 9–5. Specifying a Verilog HDL Macro a = 2

quartus_map my_design --verilog_macro="a=2" r

Example 9–6. Specifying Verilog HDL Macros a = 2 and b = 3

quartus_map my_design --verilog_macro="a=2" --verilog_macro="b=3" r

Chapter 9: Quartus II Integrated Synthesis 9–9
Language Support

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

You can override the default VHDL version for each VHDL design file by performing
the following steps:

1. On the Project menu, click Add/Remove Files in Project. The Settings dialog box
appears.

2. On the Files page, select the appropriate file in the list and click Properties.

3. In the HDL version list, select VHDL_2008, VHDL_1993, or VHDL_1987 and click
OK.

You can also specify the VHDL version used to compile the design for each design file
by using the VHDL_INPUT_VERSION synthesis directive, as shown in Example 9–7.
This directive overrides the default HDL version and any HDL version specified in
the File Properties dialog box.

The variable <language version> takes one of the following values:

■ VHDL_1987

■ VHDL_1993

■ VHDL_2008

When the software reads a VHDL_INPUT_VERSION synthesis directive, it changes the
current language version as specified until the end of the file, or until it reaches the
next VHDL_INPUT_VERSION directive.

1 You cannot change the language version in the middle of a VHDL design unit.

For more information about specifying synthesis directives, refer to “Synthesis
Directives” on page 9–26.

If you use scripts to add design files, you can use the -HDL_VERSION command to
specify the HDL version for each design file. Refer to “Adding an HDL File to a
Project and Setting the HDL Version” on page 9–80.

The Quartus II software reads default values for registered signals defined in the
VHDL code and converts the default values into power-up level settings. This enables
the power-up state of the synthesized design to match, as closely as possible, the
power-up state of the original HDL code in simulation. For more information, refer to
“Power-Up Level” on page 9–41.

VHDL Standard Libraries and Packages
The Quartus II software includes the standard IEEE libraries and a number of
vendor-specific VHDL libraries. For information about organizing your own design
units into custom libraries, refer to “Design Libraries” on page 9–12.

Example 9–7. Controlling the VHDL Input Version with a Synthesis Directive

--synthesis VHDL_INPUT_VERSION <language version>

Example 9–8. VHDL 2008—Controlling the VHDL Input Version with a Synthesis Directive

/* synthesis VHDL_INPUT_VERSION <language version> */

9–10 Chapter 9: Quartus II Integrated Synthesis
Language Support

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

The IEEE library includes the standard VHDL packages std_logic_1164,
numeric_std, numeric_bit, and math_real. The STD library is part of the
VHDL language standard and includes the packages standard (included in every
project by default) and textio. For compatibility with older designs, the Quartus II
software also supports the following vendor-specific packages and libraries:

■ Synopsys packages such as std_logic_arith and std_logic_unsigned in
the IEEE library

■ Mentor Graphics® packages such as std_logic_arith in the ARITHMETIC
library

■ Altera primitive packages altera_primitives_components (for primitives
such as GLOBAL and DFFE) and maxplus2 (for legacy support of MAX+PLUS® II
primitives) in the ALTERA library

■ Altera megafunction packages altera_mf_components and
stratixgx_mf_components in the ALTERA_MF library (for Altera-specific
megafunctions including LCELL), and lpm_components in the LPM library for
library of parameterized modules (LPM) functions.

f For a complete listing of library and package support, refer to the Quartus II Help.

1 Altera recommends that you import component declarations for Altera primitives
such as GLOBAL and DFFE from the altera_primitives_components package
and not the altera_mf_components package.

VHDL wait Constructs
The Quartus II software supports one VHDL wait until statement per process
block. Other VHDL wait constructs, such as wait for, or wait on statements, or
processes with multiple wait statements, are not supported.

Example 9–9 is a VHDL code example of a supported wait until construct.

VHDL-2008 Support
The Quartus II software supports the following VHDL 2008 functions:

■ Block comments

■ Simplified sensitivity lists

■ Extensions to generate

Example 9–9. VHDL Code: Supported wait until Construct

architecture dff_arch of ls_dff is
begin
output: process begin
wait until (CLK'event and CLK='1');
Q <= D;
Qbar <= not D;
end process output;
end dff_arch;

Chapter 9: Quartus II Integrated Synthesis 9–11
Language Support

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

AHDL Support
The Quartus II Compiler’s Analysis and Synthesis module fully supports the Altera
Hardware Description Language (AHDL).

AHDL designs use Text Design Files (.tdf). You can import AHDL Include Files (.inc)
into a .tdf file with an AHDL include statement. Altera provides .inc files for all
megafunctions shipped with the Quartus II software.

f For information about specific AHDL syntax features and language constructs, refer
to the Quartus II Help.

1 The AHDL language does not support the synthesis directives or attributes described
in this chapter.

Schematic Design Entry Support
The Quartus II Compiler’s Analysis and Synthesis module fully supports Block
Design Files (.bdf) for schematic design entry.

You can use the Quartus II Block Editor to create and edit .bdf files and open Graphic
Design Files (.gdf) imported from the MAX+PLUS II software. Use the Symbol Editor
to create and edit Block Symbol Files (.bsf) and open MAX+PLUS II Symbol Files
(.sym). You can read and edit these legacy MAX+PLUS II formats with the Quartus II
Block and Symbol Editors; however, the Quartus II software saves them as .bdf or .bsf
files.

f For information about creating and editing schematic designs, refer to the About
Schematic Design Entry in the Quartus II Help.

1 Schematic entry methods do not support the synthesis directives or attributes
described in this chapter.

State Machine Editor
The Quartus II software supports graphical state machine entry. To create a new finite
state machine (FSM) design, on the File menu, click New. In the New dialog box,
expand the Design Files list and choose State Machine File.

In the editor, you can use the State Machine Wizard to step you through the state
machine creation. Click the State Machine Wizard icon. Specify the reset information,
define the input ports, states, and transitions, and then define the output ports and
output conditions. Click Finish to create the state machine diagram.

You can also create the state machine diagram using the editor GUI. Use the icons or
right-click menu options to insert new input and output signals and create states in
the schematic display. To specify transitions, select the Transition Tool and click on
the source state, then drag the mouse to the destination state. Double-click on a
transition to specify the transition equation, using a syntax that conforms to Verilog
HDL. Double-click on a state to open the State Properties dialog box, where you can
change the state name, specify whether it acts as the reset state, and change the
incoming and outgoing transition equations.

To view and edit state machine information in a table format, click the State Machine
Table icon.

9–12 Chapter 9: Quartus II Integrated Synthesis
Language Support

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

The state machine diagram is saved as a State Machine File (.smf). When you have
finished defining the state machine logic, create a Verilog HDL or VHDL design file
by clicking the Generate HDL File icon. You can then instantiate the state machine in
your design using any design entry language.

f For more information about creating and editing state machine diagrams, refer to the
Quartus II Help.

Design Libraries
By default, the Quartus II software compiles all design files into the work library. If
you do not specify a design library, or if a file refers to a library that does not exist, or
if the referenced library does not contain a referenced design unit, the software
searches the work library. This behavior allows the Quartus II software to compile
most designs with minimal setup, while creating separate custom design libraries is
optional.

To compile your design files into specific libraries (for example, when you have two
or more functionally different design entities that share the same name), you can
specify a destination library for each design file in various ways, as described in the
following subsections:

■ “Specifying a Destination Library Name in the Settings Dialog Box”

■ “Specifying a Destination Library Name in the Quartus II Settings File or Using
Tcl”

When the Quartus II Compiler analyzes the file, it stores the analyzed design units in
the file’s destination library.

1 A design can contain two or more entities with the same name if they are compiled
into separate libraries.

When compiling a design instance, the Quartus II software initially searches for the
entity in the library associated with the instance (which is the work library if no other
library is specified). If the entity definition is not found, the software searches for a
unique entity definition in all design libraries. If more than one entity with the same
name is found, the software generates an error. If your design uses multiple entities
with the same name, you must compile the entities into separate libraries.

In VHDL, there are several ways to associate an instance with a particular entity, as
described in “Mapping a VHDL Instance to an Entity in a Specific Library”. In Verilog
HDL, BDF schematic entry, AHDL, as well as VQM and EDIF netlists, use different
libraries for each of the entities that have the same name, and compile the
instantiation into the same library as the appropriate entity.

Specifying a Destination Library Name in the Settings Dialog Box
To specify a library name for one of your design files, perform the following steps:

1. On the Assignments menu, click Settings. The Settings dialog box appears.

2. In the Category list, select Files. The Files page appears.

3. Select the file in the File Name list.

4. Click Properties.

Chapter 9: Quartus II Integrated Synthesis 9–13
Language Support

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

5. In the File Properties dialog box, select the type of design file from the Type list.

6. Type the desired library name in the Library field.

7. Click OK.

Specifying a Destination Library Name in the Quartus II Settings File or Using Tcl
You can specify the library name with the -library option to the
<language type>_FILE assignment in the Quartus II Settings File (.qsf) or with Tcl
commands.

For example, the following assignments specify that the Quartus II software analyzes
the my_file.vhd and stores its contents (design units) in the VHDL library my_lib,
and then analyzes the Verilog HDL file my_header_file.h and stores its contents in a
library called another_lib. Refer to Example 9–10.

For more information about Tcl scripting, refer to “Scripting Support” on page 9–79.

Specifying a Destination Library Name in a VHDL File
You can use the library synthesis directive to specify a library name in your VHDL
source file. This directive takes as a single string argument the name of the destination
library. Specify the library directive in a VHDL comment prior to the context clause
for a primary design unit (that is, a package declaration, an entity declaration, or a
configuration), using one of the supported keywords for synthesis directives, that is,
altera, synthesis, pragma, synopsys, or exemplar.

For more information about specifying synthesis directives, refer to “Synthesis
Directives” on page 9–26.

The library directive overrides the default library destination work, the library
setting specified for the current file through the Settings dialog box, any existing QSF
setting, any setting made through the Tcl interface, or any prior library directive in
the current file. The directive remains effective until the end of the file or the next
library synthesis directive.

Example 9–11 uses the library synthesis directive to create a library called my_lib
that contains the design unit my_entity.

1 You can specify a single destination library for all the design units in a given source
file by specifying the library name in the Settings dialog box, editing the .qsf, or using
the Tcl interface. Using the library directive to change the destination VHDL library
within a source file gives you the option of organizing the design units in a single file
into different libraries, rather than just a single library.

Example 9–10. Specifying a Destination Library Name

set_global_assignment –name VHDL_FILE my_file.vhd –library my_lib
set_global_assignment –name VERILOG_FILE my_header_file.h –library another_lib

Example 9–11. Using the Library Synthesis Directive

-- synthesis library my_lib
library ieee;
use ieee.std_logic_1164.all;
entity my_entity(...)
end entity my_entity;

9–14 Chapter 9: Quartus II Integrated Synthesis
Language Support

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

The Quartus II software produces an error if you use the library directive within a
design unit.

Mapping a VHDL Instance to an Entity in a Specific Library
The VHDL language provides a number of ways to map or bind an instance to an
entity in a specific library, as described in the following subsections.

Direct Entity Instantiation

In the direct entity instantiation method, the instantiation refers to an entity in a
specific library, as shown in Example 9–12.

Component Instantiation—Explicit Binding Instantiation

There is more than one mechanism for binding a component to an entity. In an explicit
binding indication, you bind a component instance to a specific entity, as shown in
Example 9–13.

Example 9–12. VHDL Code: Direct Entity Instantiation

entity entity1 is
port(...);
end entity entity1;

architecture arch of entity1 is
begin
inst: entity lib1.foo
port map(...);
end architecture arch;

Example 9–13. VHDL Code: Binding Instantiation

entity entity1 is
port(...);
end entity entity1;

package components is
component entity1 is
port map (...);
end component entity1;
end package components;

entity top_entity is
port(...);
end entity top_entity;

use lib1.components.all;
architecture arch of top_entity is
-- Explicitly bind instance I1 to entity1 from lib1
for I1: entity1 use entity lib1.entity1
port map(...);
end for;
begin
I1: entity1 port map(...);
end architecture arch;

Chapter 9: Quartus II Integrated Synthesis 9–15
Language Support

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Component Instantiation—Default Binding

If you do not provide an explicit binding indication, a component instance is bound to
the nearest visible entity with the same name. If no such entity is visible in the current
scope, the instance is bound to the entity in the library in which the component was
declared. For example, if the component is declared in a package in library MY_LIB,
an instance of the component is bound to the entity in library MY_LIB. The portions of
code in Example 9–14 and Example 9–15 show this instantiation method.

Using Parameters/Generics
This section describes how parameters, known as generics in VHDL, are supported in
the Quartus II software, and how you can pass these parameters between different
design languages.

You can enter default parameter values for your design in the Default Parameters
page under the Analysis & Synthesis Settings page in the Settings dialog box.
Default parameters allow you to specify the parameter overrides for your top-level
entity. In AHDL, parameters are inherited, so any default parameters apply to all
AHDL instances in the design. You can also specify parameters for instantiated
modules in a .bdf. To modify parameters in a .bdf instance, double-click on the
parameter value box for the instance symbol, or right-click on the symbol and choose
Properties, then click the Parameters tab. For these GUI-based entry methods,
information about how parameter values are interpreted, and recommendations
about the format you should use, refer to “Setting Default Parameter Values and BDF
Instance Parameter Values”.

Example 9–14. VHDL Code: Default Binding to the Entity in the Same Library as the Component Declaration

use mylib.pkg.foo; -- import component declaration from package “pkg” in
-- library “mylib”

architecture rtl of top
...
begin
-- This instance will be bound to entity “foo” in library “mylib”
inst: foo
port map(...);
end architecture rtl;

Example 9–15. VHDL Code: Default Binding to the Directly Visible Entity

use mylib.foo; -- make entity “foo” in library “mylib” directly visible
architecture rtl of top
component foo is
generic (...)
port (...);
end component;
begin
-- This instance will be bound to entity “foo” in library “mylib”
inst: foo
port map(...);
end architecture rtl;

9–16 Chapter 9: Quartus II Integrated Synthesis
Language Support

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

You can specify parameters for instantiated modules in your design source files, using
the syntax provided for that language. Some designs instantiate entities in a different
language; for example, they might instantiate a VHDL entity from a Verilog HDL
design file. You can pass parameters or generics between VHDL, Verilog HDL,
AHDL, and BDF schematic entry, and from EDIF or VQM to any of these languages.
In most cases, you do not have to do anything special to pass parameters from one
language to another. However, in some cases you might have to specify the type of
parameter you are passing. In those cases, you should follow certain guidelines to
ensure that the parameter value is interpreted correctly. For parameter type rules,
refer to “Passing Parameters Between Two Design Languages” on page 9–17.

Setting Default Parameter Values and BDF Instance Parameter Values
Default parameter values and BDF instance parameter values do not have an
explicitly declared type. In most cases, the Quartus II software can correctly infer the
type from the value without ambiguity. For example, “ABC” is interpreted as a string,
123 as an integer, and 15.4 as a floating-point value. In other cases, such as when the
instantiated subdesign language is VHDL, the Quartus II software uses the type of the
parameter/generic in the instantiated entity to determine how to interpret the value,
so that a value of 123 is interpreted as a string if the VHDL parameter is of type
string. In addition, you can set the parameter value in a format that is legal in the
language of the instantiated entity. For example, to pass an unsized bit literal value
from BDF to Verilog HDL, you can use '1 as the parameter value, and to pass a 4-bit
binary vector from BDF to Verilog HDL, you can use 4'b1111 as the parameter
value.

In a few cases, the Quartus II software cannot infer the correct type of parameter
value. To avoid ambiguity, specify the parameter value in a type-encoded format
where the first or first and second characters of the parameter indicate the type of the
parameter, and the rest of the string indicates the value in a quoted sub-string. For
example, to pass a binary string 1001 from BDF to Verilog HDL, you cannot simply
use the value 1001, because the Quartus II software interprets it as a decimal value.
You also cannot use the string "1001", because the Quartus II software interprets it as
an ASCII string. You must use the type-encoded string B"1001" for the Quartus II
software to correctly interpret the parameter value. Table 9–1 provides a list of valid
parameter strings and shows how they are interpreted within the Quartus II software.
Use the type-encoded format only when necessary to resolve ambiguity.

Table 9–1. Valid Parameter Strings and Interpretations (Part 1 of 2)

Parameter String Quartus II Parameter Type, Format, and Value

S"abc", s"abc" String value abc

"abc123", "123abc" String value abc123 or 123abc

F"12.3", f"12.3" Floating point number 12.3

-5.4 Floating point number -5.4

D"123", d"123" Decimal number 123

123, -123 Decimal number 123, -123

X"ff", H"ff" Hexadecimal value FF

Q"77", O"77" Octal value 77

B"1010", b"1010" Unsigned binary value 1010

SB"1010", sb"1010" Signed binary value 1010

Chapter 9: Quartus II Integrated Synthesis 9–17
Language Support

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

In the Quartus II software version 8.1 and later, you can select the parameter type
using the pull-down list in the Parameter tab of the Symbol Properties dialog box.
You can select the parameter types for global parameters or global constants. The
Quartus II software supports the following parameter types:

■ Unsigned Integer

■ Signed Integer

■ Unsigned Binary

■ Signed Binary

■ Octal

■ Hexadecimal

■ Float

■ Enum

■ String

■ Boolean

■ Char

■ Untyped/Auto

If you do not specify the parameter type, the Quartus II software interprets the
parameter value and defines the parameter type. Specify parameter type with the
pull-down list to avoid ambiguity.

1 If you open a .bdf in the Quartus II software version 8.1 and later, the software
automatically updates the parameter types of old symbol blocks by interpreting the
parameter value based on the language-independent format. If the parameter value
type is not recognized, the parameter type is set as untyped.

Passing Parameters Between Two Design Languages
When passing a parameter between two different languages, a design block that is
higher in the design hierarchy instantiates a lower-level subdesign block and provides
parameter information. It is essential for the parameter to be correctly interpreted by
the subdesign language (the design entity that is instantiated). Based on the
information provided by the higher-level design and the value format, and sometimes
by the parameter type of the subdesign entity, the Quartus II software interprets the
type and value of the passed parameter.

R"1", R"0", R"X", R"Z", r"1", r"0", r"X", r"Z" Unsized bit literal

E"apple", e"apple" Enum type, value name is apple

P"1 unit" Physical literal, the value is (1, unit)

A(...), a(...) Array type or record type, whose content is determined
by the string (...)

Table 9–1. Valid Parameter Strings and Interpretations (Part 2 of 2)

Parameter String Quartus II Parameter Type, Format, and Value

9–18 Chapter 9: Quartus II Integrated Synthesis
Language Support

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

When passing a parameter whose value is an enumerated type value or literal from a
language that does not support enumerated types to one that does (for example, from
Verilog HDL to VHDL), it is essential that the enumeration literal is spelled correctly
in the language of the higher-level design block (block that is higher in the hierarchy).
The parameter value is passed as a string literal, and it is up to the language of the
lower-level design to correctly convert the string literal into the correct enumeration
literal.

If the language of the lower-level entity is SystemVerilog, it is essential that the enum
value is used in the correct case. In SystemVerilog, it is recommended that two
enumeration literals do not only differ in case. For example, enum {item, ITEM} is
not a good choice of item names because these names can create confusion among
users and it is more difficult to pass parameters from case-insensitive HDLs, such as
VHDL.

Arrays have different support in different design languages. For details about the
array parameter format, refer to the Parameter section in the Analysis & Synthesis
Report of a design that contains array parameters or generics.

The following code shows examples of passing parameters from one design entry
language to a subdesign written in another language. Example 9–16 shows a VHDL
subdesign that is instantiated in a top-level Verilog HDL design in Example 9–17.
Example 9–18 shows a Verilog HDL subdesign that is instantiated in a top-level
VHDL design in Example 9–19.

Example 9–16. VHDL Parameterized Subdesign Entity

type fruit is (apple, orange, grape);
entity vhdl_sub is
generic (
name : string := "default",
width : integer := 8,
number_string : string := "123",
f : fruit := apple,
binary_vector : std_logic_vector(3 downto 0) := "0101",
signed_vector : signed (3 downto 0) := "1111");

Example 9–17. Verilog HDL Top-Level Design Instantiating and Passing Parameters to VHDL Entity
from Example 9–16

vhdl_sub inst (...);
defparam inst.name = "lower";
defparam inst.width = 3;
defparam inst.num_string = "321";
defparam inst.f = "grape"; // Must exactly match enum value
defparam inst.binary_vector = 4'b1010;

defparam inst.signed_vector = 4'sb1010;

Example 9–18. Verilog HDL Parameterized Subdesign Module

module veri_sub (...)
parameter name = "default";
parameter width = 8;
parameter number_string = "123";
parameter binary_vector = 4'b0101;
parameter signed_vector = 4'sb1111;

Chapter 9: Quartus II Integrated Synthesis 9–19
Incremental Compilation

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

To use an HDL subdesign such as the one shown in Example 9–18 in a top-level BDF
design, you must first generate a symbol for the HDL file, such as shown in
Figure 9–2. Open the HDL file in the Quartus II software, and then, on the File menu,
point to Create/Update and click Create Symbol Files for Current File.

To modify parameters on a BDF instance, double-click on the parameter value box for
the instance symbol, or right-click on the symbol and choose Properties, then click the
Parameters tab. Right-click on the symbol and choose Update Design File from
Selected Block... to pass the updated parameter to the HDL file.

Incremental Compilation
The incremental compilation feature in the Quartus II software manages a design
hierarchy for incremental design by allowing you to divide the design into multiple
partitions. Incremental compilation ensures that when a design is compiled, only
those partitions of the design that have been updated are resynthesized, reducing
compilation time and runtime memory usage. This also means that node names are
maintained during synthesis for all registered and combinational nodes in unchanged
partitions. You can perform incremental synthesis by setting the Netlist Type for all
design partitions to Post-Synthesis.

You can also preserve the placement (and optionally routing) information for
unchanged partitions. This feature allows you to preserve performance of unchanged
blocks in your design and reduces the time required for placement and routing, which
significantly reduces your design compilation time.

Partitions for Preserving Hierarchical Boundaries
A design partition represents a portion of the design that you want to synthesize and
fit incrementally.

Example 9–19. VHDL Top-Level Design Instantiating and Passing Parameters to the Verilog HDL
Module from Example 9–18

inst:veri_sub
generic map (
name => "lower",
width => 3,
number_string => "321"
binary_vector = "1010"
signed_vector = "1010")

Figure 9–2. BDF Top-Level Design Instantiating and Passing Parameters to the Verilog HDL Module
from Example 9–18.

9–20 Chapter 9: Quartus II Integrated Synthesis
Incremental Compilation

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

Beginning with Quartus II software version 9.0, if you want to preserve the
Optimization Technique and Restructure Multiplexers logic options set in any
entity, you must create new partitions for the particular entity instead of using the
Preserve Hierarchical Boundary logic option. If you have settings applied to specific
existing design hierarchies, particularly those created in the Quartus II software
versions before 9.0, you must create a design partition for the design hierarchy so that
synthesis can optimize the design instance independently and preserve the
hierarchical boundaries.

The Preserve Hierarchical Boundary logic option is available only in Quartus II
software versions 8.1 and earlier. Incremental compilation maintains the hierarchical
boundaries of design partitions, so you should use design partitions if you want to
preserve hierarchical boundaries through the synthesis and fitting process.

Parallel Synthesis
The Parallel Synthesis option is one of the Analysis and Synthesis options that you
can use to reduce compilation time for synthesis. The feature enables the Quartus II
software to use multiple processors to synthesize multiple partitions in parallel.

This feature is available only if the following requirements are met:

■ The number of processors allowed in a single machine is greater than 1. You
can specify the maximum number of processors allowed under Parallel
Compilation options in the Compilation Process Settings page of the Settings
dialog box.

■ Incremental compilation is enabled and your design has two or more
partitions.

■ In version 9.1 of the Quartus II software, Parallel Synthesis runs when
Physical Synthesis is on.

■ Parallel Synthesis is enabled.

By default, the Parallel Synthesis option is enabled. To disable parallel synthesis,
perform the following steps:

1. On the Assignments menu, click Settings. The Settings dialog box appears.

2. In the Category list, click Analysis & Synthesis Settings and click More Settings
to select Parallel Synthesis.

You can also set the Parallel Synthesis option using the following Tcl command:

set_global_assignment -name parallel_synthesis off

You can view all messages generated during parallel synthesis in the Message
console. Messages from different partitions are interleaved at runtime, but the
Partition Column displays the partition ID of the partition referred to in the message.
After compilation, you can sort the messages by Partition Column—effectively
grouping all the messages from a particular partition. To display the partition column,
right-click on the message console, point to Message Column and select Show
Partition Column. You can also display the Partition column on the Tools menu, by
clicking Options and selecting Messages in the Category list. In the Messages page,
turn on Show the Partition column.

Chapter 9: Quartus II Integrated Synthesis 9–21
Incremental Compilation

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

If you use the command line, you can differentiate among the interleaved messages
by turning on the Show partition that generated the message option in Messages
page. This option shows the partition ID in parenthesis for each message.

Quartus II Exported Partition File as Source
You can use a Quartus II Exported Partition File (.qxp) as a source file in the
Quartus II software version 8.1 and later. The .qxp is used in incremental compilation,
and contains the precompiled design netlist exported from another Quartus II project
or from a design partition within the project, which fully defines the entity. Project
team members or IP providers can use a .qxp to send their design to the project lead,
instead of sending the original HDL source code. Using this file preserves the
previous compilation results and instance-specific assignments. Not all global
assignments can be used in a different Quartus II project. You can override the
assignments for the entity in the .qxp by applying assignments in the full top-level
project.

A .qxp instance that is not assigned as a design partition does not preserve placement
and routing results. If you want to preserve the placement (and optionally routing)
results from another project or compilation, you must import a post-fitting .qxp into a
design partition in your project using the bottom-up incremental compilation flow.
The bottom-up incremental compilation flow uses a .qxp to represent lower-level
design partitions.

To create a .qxp, perform the following steps:

1. On the Project menu, click Export Design Partition.

2. In the Export file box, type the name of the .qxp. By default, the directory path and
file name are the same as the current project.

3. You can also select the Partition hierarchy to export. By default, the Top partition
(the entire project) is exported, but you can choose to export the compilation
results of any partition hierarchy in the project.

4. Under Netlist to export, select either Post-fit netlist or Post-synthesis netlist. The
default is Post-fit netlist. For post-fit netlists, turn on or off the Export routing
option as required.

5. Click OK. The Quartus II software creates the .qxp in the specified directory.

The Quartus II software adds the file into the project and .qxp into a specific library.
The design entity in the .qxp can also be instantiated multiple times in the design.

f For more information about exporting design partitions and using .qxp files, refer to
the Quartus II Incremental Compilation for Hierarchical and Team-Based Design chapter in
volume 1 of the Quartus II Handbook.

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

9–22 Chapter 9: Quartus II Integrated Synthesis
Quartus II Synthesis Options

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

Quartus II Synthesis Options
The Quartus II software offers a number of options to help you control the synthesis
process and achieve optimal results for your design. “Setting Synthesis Options” on
page 9–24 describes the Analysis & Synthesis Settings page of the Settings dialog
box, where you can set the most common global settings and options, and defines the
following three types of synthesis options: Quartus II logic options, synthesis
attributes, and synthesis directives.

1 When you apply a Quartus II Synthesis option globally or to an entity it affects all
lower-level entities in the hierarchy path, including entities instantiated with Altera
and third-party IP.

The other subsections describe the following common synthesis options in the
Quartus II software, and provide HDL examples of how to use each option, where
applicable:

■ Major Optimization Settings

■ “Optimization Technique” on page 9–27

■ “Auto Gated Clock Conversion” on page 9–28

■ “PowerPlay Power Optimization” on page 9–30

■ “Restructure Multiplexers” on page 9–32

■ “Synthesis Effort” on page 9–34

■ Settings Related to Timing Constraints

■ “Timing-Driven Synthesis” on page 9–29

■ “Optimization Technique” on page 9–27

■ “Auto Gated Clock Conversion” on page 9–28

■ “SDC Constraint Protection” on page 9–30

■ State Machine Settings and Enumerated Types

■ “State Machine Processing” on page 9–35

■ “Manually Specifying State Assignments Using the syn_encoding Attribute”
on page 9–36

■ “Manually Specifying Enumerated Types Using the enum_encoding Attribute”
on page 9–38

■ “Safe State Machines” on page 9–39

■ Register Power-Up Settings

■ “Power-Up Level” on page 9–41

■ “Power-Up Don’t Care” on page 9–42

Chapter 9: Quartus II Integrated Synthesis 9–23
Quartus II Synthesis Options

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

■ Controlling, Preserving, Removing, and Duplicating Logic and Registers

■ “Limiting DSP and RAM Block Usage in Partitions” on page 9–31

■ “Remove Duplicate Registers” on page 9–42

■ “Preserve Registers” on page 9–42

■ “Disable Register Merging/Don’t Merge Register” on page 9–43

■ “Noprune Synthesis Attribute/Preserve Fan-out Free Register Node” on
page 9–44

■ “Keep Combinational Node/Implement as Output of Logic Cell” on page 9–45

■ “Disabling Synthesis Netlist Optimizations with dont_retime Attribute” on
page 9–46

■ “Disabling Synthesis Netlist Optimizations with dont_replicate Attribute” on
page 9–46

■ “Maximum Fan-Out” on page 9–47

■ “Controlling Clock Enable Signals with Auto Clock Enable Replacement and
direct_enable” on page 9–48

■ “Auto Gated Clock Conversion” on page 9–28

■ “Partitions for Preserving Hierarchical Boundaries” on page 9–19

■ Megafunction Inference Options

■ “Megafunction Inference Control” on page 9–49

■ “RAM Style and ROM Style—for Inferred Memory” on page 9–52

■ “Turning Off the Add Pass-Through Logic to Inferred RAMs no_rw_check
Attribute” on page 9–53

■ “RAM Initialization File—for Inferred Memory” on page 9–56

■ “Multiplier Style—for Inferred Multipliers” on page 9–57

■ Controlling Synthesis with Other Synthesis Directives

■ “Full Case” on page 9–59

■ “Parallel Case” on page 9–60

■ “Translate Off and On / Synthesis Off and On” on page 9–61

■ “Ignore translate_off and synthesis_off Directives” on page 9–62

■ “Read Comments as HDL” on page 9–62

■ Specifying I/O-Related Assignments

■ “Use I/O Flipflops” on page 9–63

■ “Specifying Pin Locations with chip_pin” on page 9–65

■ Setting Quartus II Logic Options in Your HDL Source Code

■ “Using altera_attribute to Set Quartus II Logic Options” on page 9–66

9–24 Chapter 9: Quartus II Integrated Synthesis
Quartus II Synthesis Options

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

Setting Synthesis Options
You can set synthesis options in the Settings dialog box, or with logic options in the
Quartus II software, or you can use synthesis attributes and directives within your
HDL source code.

Analysis & Synthesis Settings Page of the Settings Dialog Box
The Analysis & Synthesis Settings page allows you to set global synthesis options
that apply to the entire project. You can also use a corresponding Tcl command. These
options are described in later subsections.

In the Quartus II software version 9.0 and later, some of the advanced synthesis
settings are set in the Physical Synthesis Optimizations page under Compilation
Process Settings.

f For more information about Physical Synthesis options, refer to the Netlist
Optimizations and Physical Synthesis chapter in volume 2 of the Quartus II Handbook.

Quartus II Logic Options
The Quartus II logic options control many aspects of the synthesis and
place-and-route process. To set logic options in the Quartus II GUI, on the
Assignments menu, click Assignment Editor. You can also use a corresponding Tcl
command to set global assignments. The Quartus II logic options allow you to set
instance or node-specific assignments without editing the source HDL code.

f For more information about using the Assignment Editor, refer to the Assignment
Editor chapter in volume 2 of the Quartus II Handbook.

Synthesis Attributes
The Quartus II software supports synthesis attributes for Verilog HDL and VHDL,
also commonly called pragmas. These attributes are not standard Verilog HDL or
VHDL commands. Synthesis tools use attributes to control the synthesis process in a
particular manner. Attributes always apply to a specific design element, and are
applied in the HDL source code. Some synthesis attributes are also available as
Quartus II logic options via the Quartus II GUI or scripting. Each attribute description
in this chapter indicates whether there is a corresponding setting or logic option that
can be set in the GUI. Some attributes can be specified only with HDL synthesis
attributes.

Attributes specified in your HDL code are not visible in the Assignment Editor or in
the .qsf. Assignments or settings made with the Quartus II GUI, the .qsf, or the Tcl
interface take precedence over assignments or settings made with synthesis attributes
in your HDL code. The Quartus II software generates warning messages if invalid
attributes are found, but does not generate an error or stop the compilation. This
behavior is required because attributes are specific to various design tools, and
attributes not recognized in the Quartus II software might be intended for a different
EDA tool. The Quartus II software lists the attributes specified in your HDL code in
the Source assignments table of the Analysis & Synthesis report.

http://www.altera.com/literature/hb/qts/qts_qii52001.pdf
http://www.altera.com/literature/hb/qts/qts_qii52001.pdf
http://www.altera.com/literature/hb/qts/qts_qii52007.pdf
http://www.altera.com/literature/hb/qts/qts_qii52007.pdf

Chapter 9: Quartus II Integrated Synthesis 9–25
Quartus II Synthesis Options

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

The Verilog-2001, SystemVerilog, and VHDL language definitions provide specific
syntax for specifying attributes, but in Verilog-1995, you must embed attribute
assignments in comments. You can enter attributes in your code using the syntax in
Example 9–20 through Example 9–23, where <attribute>, <attribute type>, <value>,
<object>, and <object type> are variables, and the entry in brackets is optional. The
examples in this chapter demonstrate each syntax form.

1 Verilog HDL is case-sensitive; therefore, synthesis attributes in Verilog HDL files are
also case-sensitive.

Verilog-1995 comment-embedded attributes, as shown in Example 9–20, must be used
as a suffix to (that is, placed after) the declaration of an item and must appear before
the semicolon when one is required.

1 You cannot use the open one-line comment in Verilog HDL when a semicolon is
required at the end of the line, because it is not clear to which HDL element the
attribute applies. For example, you cannot make an attribute assignment such as
reg r; // synthesis <attribute> because the attribute could be read as part of the
next line.

To apply multiple attributes to the same instance in Verilog-1995, separate the
attributes with spaces, as follows:

//synthesis <attribute1> [= <value>] <attribute2> [= <value>]

For example, to set the maxfan attribute to 16 (for details, refer to “Maximum Fan-
Out” on page 9–47) and set the preserve attribute (for details, refer to “Preserve
Registers” on page 9–42) on a register called my_reg, use the following syntax:

reg my_reg /* synthesis maxfan = 16 preserve */;

In addition to the synthesis keyword shown above, the keywords pragma,
synopsys, and exemplar are supported for compatibility with other synthesis tools.
The keyword altera is also supported, which allows you to add synthesis attributes
that will be recognized only by Quartus II integrated synthesis and not by other tools
that recognize the same synthesis attribute.

1 Because formal verification tools do not recognize the exemplar, pragma, and
altera keywords, avoid using these attribute keywords when using formal
verification.

Example 9–20. Synthesis Attributes in Verilog-1995

// synthesis <attribute> [= <value>]
or
/* synthesis <attribute> [= <value>] */

Example 9–21. Synthesis Attributes in Verilog-2001 and SystemVerilog

(* <attribute> [= <value>] *)

9–26 Chapter 9: Quartus II Integrated Synthesis
Quartus II Synthesis Options

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

Verilog-2001 attributes, as shown in Example 9–21, must be used as a prefix to (that is,
placed before) a declaration, module item, statement, or port connection, and used as
a suffix to (that is, placed after) an operator or a Verilog HDL function name in an
expression.

1 Because formal verification tools do not recognize the syntax, the Verilog-2001
attribute syntax is not supported when using formal verification.

To apply multiple attributes to the same instance in Verilog-2001 or SystemVerilog,
separate the attributes with commas, as shown in Example 9–22:

For example, to set the maxfan attribute to 16 (refer to “Maximum Fan-Out” on
page 9–47 for details) and set the preserve attribute (refer to “Preserve Registers” on
page 9–42 for details) on a register called my_reg, use the following syntax:

(* maxfan = 16, preserve *) reg my_reg;

VHDL attributes, as shown in Example 9–23, declare the attribute type and then apply
it to a specific object. Each attribute is defined and applied separately to a given node.
For VHDL designs, all supported synthesis attributes are declared in the
altera_syn_attributes package in the Altera library. You can call this library
from your VHDL code to declare the synthesis attributes, as follows:

LIBRARY altera;
USE altera.altera_syn_attributes.all;

Synthesis Directives
The Quartus II software supports synthesis directives, also commonly called compiler
directives or pragmas. You can include synthesis directives in Verilog HDL or VHDL
code as comments. These directives are not standard Verilog HDL or VHDL
commands. Synthesis tools use directives to control the synthesis process in a
particular manner. Directives do not apply to a specific design node but change the
behavior of the synthesis tool from the point where they occur in the HDL source
code. Other tools, such as simulators, ignore these directives and treat them as
comments.

You can enter synthesis directives in your code using the syntax shown in
Example 9–24, Example 9–25, and Example 9–26, in which <directive> and <value> are
variables, and the entry in brackets is optional. Notice that for synthesis directives
there is no equal sign before the value; this is different than the Verilog syntax for
synthesis attributes. The examples in this chapter demonstrate each syntax form.

1 Verilog HDL is case-sensitive; therefore, all synthesis directives are also case-sensitive.

Example 9–22. Applying Multiple Attributes

(* <attribute1> [= <value1>], <attribute2> [= <value2>] *)

Example 9–23. Synthesis Attributes in VHDL

attribute <attribute> : <attribute type> ;
attribute <attribute> of <object> : <object type> is <value>;

Chapter 9: Quartus II Integrated Synthesis 9–27
Quartus II Synthesis Options

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

In addition to the synthesis keyword shown above, the pragma, synopsys, and
exemplar keywords are supported in both Verilog HDL and VHDL for compatibility
with other synthesis tools. The keyword altera is also supported, which allows you
to add synthesis directives that are recognized only by Quartus II integrated synthesis
and not by other tools that recognize the same synthesis directives.

1 Because formal verification tools ignore keywords exemplar, pragma, and altera,
avoid using these directive keywords when you are using formal verification to
prevent mismatches with the Quartus II results.

Optimization Technique
The Optimization Technique logic option specifies the goal for logic optimization
during compilation; that is, whether to attempt to achieve maximum speed
performance or minimum area usage, or a balance between the two. Table 9–2 lists the
settings for this logic option, which you can apply only to a design entity. You can also
set this logic option for your whole project in the Settings dialog box. If you want to
set this logic option for an entity, you must create a design partition for the entity
before setting the Optimization Technique logic option. Beginning in Quartus II
version 9.0, this option is ignored when set on an entity that is not a design partition.

The default setting varies by device family and is generally optimized for the best area
or speed trade-off. Results are design-dependent and vary depending on which
device family you use.

Example 9–24. Verilog HDL Code: Synthesis Directives

// synthesis <directive> [<value>]
or
/* synthesis <directive> [<value>] */

Example 9–25. VHDL Code: Synthesis Directives

-- synthesis <directive> [<value>]

Example 9–26. VHDL 2008 Code: Synthesis Directives

/* synthesis <directive> [<value>] */

Table 9–2. Optimization Technique Settings

Setting Description

Area The compiler makes the design as small as possible to minimize resource usage.

Speed The compiler chooses a design implementation that has the fastest fMAX.

Balanced (1) The compiler maps part of the design for area and part for speed, providing better area utilization than
optimizing for speed, with a slightly slower fMAX than optimizing for speed.

Note to Table 9–2:

(1) The balanced optimization technique is not supported for all device families.

9–28 Chapter 9: Quartus II Integrated Synthesis
Quartus II Synthesis Options

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

Auto Gated Clock Conversion
Clock gating is a common optimization technique used in ASIC designs to minimize
power consumption. You can use the Auto Gated Clock Conversion option to
optimize your prototype ASIC designs by converting gated clocks into clock enables
when you use FPGAs in your ASIC prototyping. The automatic conversion of gated
clocks to clock enables is more efficient than manually modifying source code.
However, this feature should not be used when migrating FPGA designs to
HardCopy ASICs. The Auto Gated Clock Conversion option automatically converts
qualified gated clocks (base clocks as defined in the synopsys design constraints
[SDC]) to clock enables. To use Auto Gated Clock Conversion, you must select the
option from the More Analysis & Synthesis Settings dialog box, which is found in
the Analysis & Synthesis Settings page.

The gated clock conversion occurs when the following conditions are met:

■ Only one base clock drives a gated-clock

■ For one set of gating input values, the value output of the gated clock remains
constant and does not change as the base clock changes

■ For one value of the base clock, changes in the gating inputs do not change the
value output for the gated clock

The feature supports combinational gates in clock gating network.

Figure 9–3 shows examples of gated clock conversions.

Figure 9–3. Gated Clock Conversion

clk

ena1

clk

ena1

ena

ena

clk

ena1

ena

ena

ena2

ena

ena

clk

ena

enaena1

ena2

Chapter 9: Quartus II Integrated Synthesis 9–29
Quartus II Synthesis Options

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

1 This feature does not support registers in RAM, DSP blocks, or I/O related
WYSIWYG primitives. The gated clock conversion does not support multiple design
partitions from incremental compilation where the gated clock and base clock are not
in the same hierarchical partition because the gated-clock conversion cannot trace the
base clock from the gated clock. Thus, base clocks and gated clocks must be in the
same hierarchical design partition. If a gated clock that is derived from a root gated
clock of a multiple cascaded gated clock cannot be converted, the whole gated clock
tree is not converted, because each conversion is based on a gated clock tree instead of
every gated clock.

The Info tab in the Messages window lists all the converted gated clocks. You can
view a list of converted and non-converted gated clocks from the Compilation Report
under the Optimization Results of the Analysis & Synthesis Report. The reasons for
non-converted gated clocks are listed in the Gated Clock Conversion Details table.

This feature is available only for the TimeQuest timing analyzer and supports the
following device families: Arria GX series, Stratix series (except for Stratix) and
Cyclone series (except for Cyclone), HardCopy II, and MAX II devices.

Timing-Driven Synthesis
The Timing-Driven Synthesis option specifies whether Analysis & Synthesis should
use the design's SDC timing constraints to better optimize the circuit. When this
option is turned on, Analysis & Synthesis runs timing analysis to obtain timing
information about the netlist, and then takes into account the SDC timing constraints
to focus on critical portions of the design when optimizing for performance, while
optimizing non-critical portions for area. When you turn on this option, Analysis &
Synthesis also protects SDC constraints by not merging duplicate registers that have
incompatible timing constraints. For more information, refer to “SDC Constraint
Protection” on page 9–30.

Turning on the Timing-Driven Synthesis option causes Analysis & Synthesis to
increase performance by improving logic depth on critical portions of the design, and
to improve area on non-critical portions of the design. The increased performance
comes at the cost of area, specifically adaptive look-up tables (ALUTs) and registers in
the design. Depending on how much of the design is timing critical, overall area can
increase or decrease when the Timing-Driven Synthesis option is turned on. Runtime
and peak memory use increases slightly if you turn on the Timing-Driven Synthesis
option.

When you turn on the Timing-Driven Synthesis option, the Optimization
Technique logic option has the following effect. With Optimization Technique
Speed, Timing-Driven Synthesis optimizes timing-critical portions of the design for
performance at the cost of increasing area (logic and register utilization). With an
Optimization Technique of Balanced, Timing-Driven Synthesis also optimizes the
timing-critical portions of the design for performance, but it only allows limited area
increase. With Optimization Technique Area, Timing-Driven Synthesis only
optimizes the design for area. Timing-Driven Synthesis prevents registers with
incompatible timing constraints from merging for any Optimization Technique

9–30 Chapter 9: Quartus II Integrated Synthesis
Quartus II Synthesis Options

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

setting. If your design contains multiple partitions, you can select Timing-Driven
Synthesis options individually for every partition. If you use a .qxp as a source file, or
if your design uses imported partitions, these partitions are treated as a black box.
This means that Timing-Driven Synthesis cannot properly compute timing of paths
that cross the boundary of such a partition.

To change the Timing-Driven Synthesis option, perform the following steps:

1. On the Assignment menu, click Settings. The Settings dialog box appears.

2. In the Category list, select Analysis & Synthesis Settings. In the Analysis &
Synthesis Settings page, select or unselect Timing-Driven Synthesis.

The feature is available only for the TimeQuest timing analyzer and supports Arria
series, Cyclone series (except Cyclone devices), Stratix series (except Stratix devices),
and HardCopy II devices. The feature is turned on by default for all supported
devices except for Stratix II and Cyclone II devices. Altera recommends that you select
a specific device for timing-driven synthesis to have the most accurate timing
information. When auto device is selected, timing-driven synthesis uses the smallest
device for the selected family to obtain timing information.

SDC Constraint Protection
The SDC Constraint Protection option specifies whether Analysis & Synthesis should
protect registers from merging when they have incompatible timing constraints. For
example, two registers that are duplicates of each other but have different multicycle
constraints on them are not merged when this option is on. When Timing-Driven
Synthesis is turned on, registers with incompatible constraints are automatically
detected, and there is no need to explicitly turn on SDC Constraint Protection. To use
the SDC constraint protection option, you must turn on the option in the More
Analysis & Synthesis Settings dialog box, which is found in the Analysis &
Synthesis Settings page.

This feature supports the following device families: Arria GX, Stratix series (except
Stratix devices), Cyclone series (except Cyclone devices), HardCopy II, and MAX II
devices.

PowerPlay Power Optimization
This logic option controls the power-driven compilation setting of Analysis and
Synthesis and determines how aggressively Analysis and Synthesis optimizes the
design for power. On the Assignments menu, click Settings. In the Category list,
select Analysis & Synthesis Settings. This displays the Analysis & Synthesis
Settings page. The following three settings are available for the PowerPlay power
optimization option:

■ Off—Analysis and Synthesis does not perform any power optimizations.

■ Normal compilation—Analysis and Synthesis performs power optimizations,
without reducing design performance.

■ Extra effort—Analysis and Synthesis performs additional power optimizations,
which can reduce design performance.

This logic option is available for the following device families: Arria GX,
Cyclone series, HardCopy II, MAX II, and Stratix series.

Chapter 9: Quartus II Integrated Synthesis 9–31
Quartus II Synthesis Options

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

f For more information about optimizing your design for power utilization, refer to the
Power Optimization chapter in volume 2 of the Quartus II Handbook. For information
about analyzing your power results, refer to the PowerPlay Power Analysis chapter in
volume 3 of the Quartus II Handbook.

Limiting DSP and RAM Block Usage in Partitions
One important step of Analysis and Synthesis is resource balancing. In this step,
Quartus II integrated synthesis logic option allows you to specify the maximum
number of digital signal processing (DSP) blocks that the DSP block balancer assumes
exist in the current device for the current partition. This option overrides the usual
method of using the maximum number of DSP blocks the current device supports.
For incremental compilation, each partition has a separate balancing step.

By default, Quartus II integrated synthesis looks at the targeted device information to
find out the number of DSP blocks available for use. However, in incremental
compilation, each partition looks at the device information independently and
consequently assumes that it has all the DSP blocks in the device available for use.
This can result in over-allocation of DSP blocks in the design, which means that the
total number of DSP blocks used by all the partitions is greater than the number of
DSP blocks available in the device. This can eventually lead to a no-fit error during
the fitting process.

To avoid this, set the Maximum DSP Block Usage assignment on each partition to
manually limit the number of DSP blocks used. You can set this assignment on a
partition using the Assignment Editor by selecting the Maximum DSP Block Usage
assignment, and setting it on the root entity of a partition. Set any positive integer as
the value of this assignment. If this assignment is set on a name other than a partition
root, the Analysis and Synthesis gives an error.

The Maximum DSP Block Usage assignment is available only for supported device
families. Refer to the Quartus II Help for a list of the devices.

f For more information about using the Assignment Editor, refer to the Assignment
Editor chapter in volume 2 of the Quartus II Handbook.

1 The partition-specific assignment overrides the global assignment, if any. However,
each partition that does not have a partition-specific Maximum DSP Block Usage
assignment limits the number of the DSP blocks to the value set by the global
assignment. This can also lead to over-allocation of DSP blocks. Therefore, always set
this assignment on each partition individually.

Manually limiting the DSP blocks usage is also useful for HardCopy ASIC device
migration, in which the number of DSP blocks that are implemented in
HardCopy ASIC devices is more than the number of DSP blocks that are implemented
in its companion Stratix II device.

In the Quartus II software version 8.1 and later, the floorplan aware synthesis feature
enables you to use LogicLock regions to define resource allocation for DSP blocks and
RAM blocks before setting the maximum resource allocation assignment.

http://www.altera.com/literature/hb/qts/qts_qii52016.pdf
http://www.altera.com/literature/hb/qts/qts_qii53013.pdf
http://www.altera.com/literature/hb/qts/qts_qii52001.pdf
http://www.altera.com/literature/hb/qts/qts_qii52001.pdf

9–32 Chapter 9: Quartus II Integrated Synthesis
Quartus II Synthesis Options

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

f For more information about using LogicLock regions to create a floorplan for
incremental compilation, refer to the Quartus II Incremental Compilation for Hierarchical
and Team-Based Design chapter in volume 1 of the Quartus II Handbook, or refer to the
Quartus II Help.

Altera recommends that you always use LogicLock assignments first before setting
the maximum resource allocation assignments per partition. However, this
recommendation might not affect resource balancing if you manually assign nodes in
a partition to different LogicLock regions and if there are some unassigned nodes
which fall in the root LogicLock region where nodes are often from more than one
partition. Thus, you can move the unassigned nodes to the defined LogicLock regions
in the respective partitions and use the floorplan aware synthesis feature for better
DSP and RAM balancing.

The floorplan-aware synthesis feature is turned on by default. If you do not want the
software to consider the LogicLock floorplan constraints when performing DSP and
RAM balancing, you can turn off the floorplan aware synthesis feature. Set the Use
LogicLock Constraints During Resource Balancing option to Off in the Analysis &
Synthesis Settings page by clicking More Settings.

DSP balancing converts extra DSP blocks in the design into equivalent logic to meet
Fitter requirements where the number of DSP blocks in design is less than or equal to
the number of DSP blocks available. RAM balancing converts RAM blocks from one
RAM type to another to meet Fitter requirements in which the RAM block utilization
of each RAM type is within limits of the available blocks for each RAM type. The
floorplan aware synthesis option also allows you to specify maximum resources for
different RAM types, such as Maximum Number of M4K/M9K Memory Blocks,
Maximum Number of M512 Memory Blocks, or Maximum Number of
M-RAM/M144K Memory Blocks.

You can specify the maximum DSP and RAM resource allocation by selecting either
the Maximum DSP Block Usage or Maximum Number <block type> Memory Blocks
option in the More Analysis & Synthesis Settings dialog box, which is found in the
Analysis & Synthesis Settings page.

1 HardCopy II devices have a limited number of DSP and RAM blocks and there is no
assignment to limit the DSP and RAM blocks usage in the HardCopy II device
migration. Thus, Altera recommends that the maximum resource options are set to
the default value of -1 (UNLIMITED) for the migration flow.

You can view DSP and RAM block usage after balancing from the Compilation
Report.

Restructure Multiplexers
The Restructure Multiplexers option restructures multiplexers more efficiently for
area, allowing the design to implement multiplexers with a reduced number of LEs or
ALMs. This option is available for: Arria GX, Cyclone series, HardCopy II, MAX II,
and Stratix series.

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

Chapter 9: Quartus II Integrated Synthesis 9–33
Quartus II Synthesis Options

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

The Restructure Multiplexers option works on entire trees of multiplexers.
Multiplexers may arise in different parts of the design through Verilog HDL or VHDL
constructs such as the “if,” “case,” or “?:” statements. When multiplexers from one
part of the design feed multiplexers in another part of the design, trees of multiplexers
are formed. Multiplexer buses occur most often as a result of multiplexing together
arrays in Verilog HDL, or STD_LOGIC_VECTOR signals in VHDL. The Restructure
Multiplexers option identifies buses of multiplexer trees that have a similar structure.
When it is turned on, this option optimizes the structure of each multiplexer bus for
the target device to reduce the overall amount of logic used in the design.

Results of the multiplexer optimizations are design dependent, but area reductions as
high as 20% are possible. The option can negatively affect your design’s fMAX.

Table 9–3 lists the settings for the logic option, which you can apply to an individual
node or to an entity that is a design partition. Beginning in the Quartus II software
version 9.0, this option is only valid when set on an entity that is a design partition.
You can also specify this option for your whole project on the Analysis & Synthesis
Settings page of the Settings dialog box by clicking More Settings and setting the
option value.

After compilation, you can view multiplexer restructuring information in the
Multiplexer Restructuring Statistics report in the Multiplexer Statistics folder under
Analysis & Synthesis Optimization Results in the Analysis & Synthesis section of
the Compilation Report. Table 9–4 describes the information that is listed in the
Multiplexer Restructuring Statistics report table for each bus of multiplexers.

Table 9–3. Restructure Multiplexer Settings

Setting Description

On Enables multiplexer restructuring to minimize your design area. This setting can reduce the fMAX.

Off Disables multiplexer restructuring to avoid possible reductions in fMAX.

Auto
(Default)

Allows the compiler to determine whether to enable the option based on your other Quartus II synthesis
settings. When the Optimization Technique option is set to Area or Balanced, Quartus II integrated synthesis
restructures all multiplexers.

When the Optimization Technique option is set to Speed, Quartus II integrated synthesis attempts to
restructure the multiplexers selectively and makes a good trade-off between area and fMAX.

Table 9–4. Multiplexer Information in the Multiplexer Restructuring Statistics Report (Part 1 of 2)

Heading Description

Multiplexer Inputs The number of different inputs that are multiplexed together.

Bus Width The width of the bus in bits.

Baseline Area An estimate of how many logic cells are required to implement the bus of multiplexers (before
any multiplexer restructuring takes place). This estimate can be used to identify any large
multiplexers in the design.

Area if Restructured An estimate of how many logic cells are required to implement the bus of multiplexers if
Multiplexer Restructuring is applied.

Saving if Restructured An estimate of how many logic cells are saved if Multiplexer Restructuring is applied.

9–34 Chapter 9: Quartus II Integrated Synthesis
Quartus II Synthesis Options

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

f For more information about optimizing for multiplexers, refer to the Multiplexers
section of the Recommended HDL Coding Styles chapter in volume 1 of the Quartus II
Handbook.

Synthesis Effort
The Synthesis Effort option specifies the overall synthesis effort level in the
Quartus II software. The level can be either Fast or Auto.

The Auto setting indicates standard synthesis effort. The Quartus II software attempts
to optimize your design as much as possible.

When the effort level is set to Fast, Quartus II integrated synthesis skips a number of
steps to make synthesis run much faster (at the cost of performance and resource
utilization). Use the Fast synthesis effort level with the Fitter early timing estimate
feature. The early timing estimate feature gives you preliminary timing estimates
before running a full compilation, which results in a quicker iteration time; therefore,
you can save significant compilation time to get a good estimation of the final timing
of your design. When you use the Fast synthesis effort level as part of a full
compilation, Fitter runtime might increase because fast synthesis produces a netlist
that is slightly more difficult for the Fitter to route as compared to the netlist from a
normal synthesis. When the Synthesis Effort option is set to Fast, Timing-Driven
Synthesis automatically turns off.

To set the Synthesis Effort option from the Quartus II GUI, on the Analysis &
Synthesis Settings page, click More Settings. Select Auto or Fast from the pull-down
menu in the Synthesis Effort option, and click OK to close the Settings dialog box.

To set the Synthesis Effort option at the command line, use the --effort option
with the quartus_map executable, as shown in Example 9–27.

If you want to run fast synthesis with the Fitter Early Timing Estimate option, use the
command shown in Example 9–28. This command runs the full flow with timing
analysis.

Registered An indication of whether registers are present on the multiplexer outputs. Multiplexer
Restructuring uses the secondary control signals of a register (such as synchronous clear and
synchronous load) to further reduce the amount of logic required to implement the bus of
multiplexers.

Example Multiplexer
Output

The name of one of the multiplexer outputs. This name can help determine where in the design
the multiplexer bus originated.

Table 9–4. Multiplexer Information in the Multiplexer Restructuring Statistics Report (Part 2 of 2)

Heading Description

Example 9–27. Command Syntax for Specifying Synthesis Effort Option

quartus_map <Design name> --effort= "auto | fast"

Example 9–28. Command Syntax for running fast synthesis with Early Timing Estimate Option

quartus_sh --flow early_timing_estimate_with_synthesis <Design name>

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

Chapter 9: Quartus II Integrated Synthesis 9–35
Quartus II Synthesis Options

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

You can also run this flow from the Tasks pane in the Quartus II software. Select and
expand Compile Design, then Analysis & Synthesis. Double-click Early Timing
Estimate to start the flow.

State Machine Processing
The State Machine Processing logic option specifies the processing style used to
synthesize a state machine. Table 9–5 lists the settings for this logic option, which you
can apply to a state machine name or to a design entity containing a state machine.
You can also set this option for your whole project on the Analysis & Synthesis
Settings page in the Settings dialog box.

The default state machine encoding, which is Auto, uses one-hot encoding for FPGA
devices and minimal-bits encoding for CPLDs. These settings achieve the best results
on average, but another encoding style might be more appropriate for your design, so
this option allows you to control the state machine encoding.

f For guidelines to ensure that your state machine is inferred and encoded correctly,
refer to the Recommended HDL Coding Styles chapter in volume 1 of the Quartus II
Handbook.

For one-hot encoding, the Quartus II software does not guarantee that each state has
one bit set to one and all other bits to zero. Quartus II integrated synthesis creates
one-hot register encoding by using standard one-hot encoding and then inverting the
first bit. This results in an initial state with all zero values, and the remaining states
have two 1 values. Quartus II integrated synthesis encodes the initial state with all
zeros for the state machine power-up because all device registers power up to a low
value. This encoding has the same properties as true one-hot encoding: each state can
be recognized by the value of one bit. For example, in a one-hot-encoded state
machine with five states, including an initial or reset state, the software uses the
following register encoding:

Table 9–5. State Machine Processing Settings

Setting Description

Auto (Default) Allows the compiler to choose what it determines to be the best encoding for the state machine.

Minimal Bits Uses the least number of bits to encode the state machine.

One-Hot Encodes the state machine in one-hot style. See the example below for details.

User-Encoded Encodes the state machine in the manner that you specify.

Sequential Uses a binary encoding in which the first enumeration literal in the Enumeration Type has encoding 0, the
second 1, and so on.

Gray Uses an encoding in which the encodings for adjacent enumeration literals differ by exactly one bit. An
N-bit gray code can represent 2N values.

Johnson Uses an encoding similar to a gray code, in which each state only has one bit different from its
neighboring states. Each state is generated by shifting the previous state’s bits to the right by 1. The most
significant bit of each state is the negation of the least significant bit of the previous state. An N-bit
Johnson code can represent at most 2N states but requires less logic than a gray encoding.

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

9–36 Chapter 9: Quartus II Integrated Synthesis
Quartus II Synthesis Options

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

State 0 0 0 0 0 0
State 1 0 0 0 1 1
State 2 0 0 1 0 1
State 3 0 1 0 0 1
State 4 1 0 0 0 1

If the State Machine Processing logic option is set to User-Encoded in a Verilog HDL
design, the software starts with the original design values for the state constants. For
example, a Verilog HDL design can contain a declaration such as the following
example:

parameter S0 = 4'b1010, S1 = 4'b0101, ...

If the software infers the states S0, S1,... the encoding 4'b1010, 4'b0101,...
encoding is used. If necessary, the software inverts bits in a user-encoded state
machine to ensure that all bits of the reset state of the state machine are zero.

To assign your own state encoding with the User-Encoded setting of the State
Machine Processing option in a VHDL design, you must apply specific binary
encoding to the elements of an enumerated type because enumeration literals have no
numeric values in VHDL. Use the syn_encoding synthesis attribute to apply your
encoding values. For more information, refer to “Manually Specifying State
Assignments Using the syn_encoding Attribute”.

For information about the Safe State Machine option, refer to “Safe State Machines”
on page 9–39.

Manually Specifying State Assignments Using the syn_encoding Attribute
The Quartus II software infers state machines from enumerated types and
automatically assigns state encoding based on “State Machine Processing” on
page 9–35. With this logic option, you can choose the value User-Encoded to use the
encoding from your HDL code. However, in standard VHDL code, you cannot specify
user encoding in the state machine description because enumeration literals have no
numeric values in VHDL.

To assign your own state encoding for the User-Encoded State Machine Processing
setting, use the syn_encoding synthesis attribute to apply specific binary encodings
to the elements of an enumerated type or to specify an encoding style. The Quartus II
software can implement Enumeration Types with the different encoding styles shown
in Table 9–6.

Table 9–6. syn_encoding Attribute Values (Part 1 of 2)

Attribute Value Description

"default" Use an encoding based on the number of enumeration literals in the Enumeration Type. If there are
fewer than five literals, use the "sequential" encoding. If there are more than five but fewer than
50 literals, use a "one-hot" encoding. Otherwise, use a "gray" encoding.

"sequential" Use a binary encoding in which the first enumeration literal in the Enumeration Type has encoding 0,
the second 1, and so on.

"gray" Use an encoding in which the encodings for adjacent enumeration literals differ by exactly one bit. An
N-bit gray code can represent 2N values.

"johnson" Use an encoding similar to a gray code. An N-bit Johnson code can represent at most 2N states but
requires less logic than a gray encoding.

"one-hot" The default encoding style requiring N bits, where N is the number of enumeration literals in the
Enumeration Type.

Chapter 9: Quartus II Integrated Synthesis 9–37
Quartus II Synthesis Options

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

The syn_encoding attribute must follow the enumeration type definition but
precede its use.

In Example 9–29, the syn_encoding attribute associates a binary encoding with the
states in the enumerated type count_state. In this example, the states are encoded
with the following values: zero = "11", one = "01", two = "10", three = "00".

You can also use the syn_encoding attribute in Verilog HDL to direct the synthesis
tool to use the encoding from your HDL code, instead of using the State Machine
Processing option.

The syn_encoding value "user" instructs the Quartus II software to encode each
state with its corresponding value from the Verilog HDL source code. By changing the
values of your state constants, you can change the encoding of your state machine.

In Example 9–30, the states are encoded as follows:

init = "00"
last = "11"
next = "01"
later = "10"

Without the syn_encoding attribute, the Quartus II software encodes the state
machine based on the current value of the State Machine Processing logic option.

"compact" Use an encoding with the fewest bits.

"user" Encode each state using its value in the Verilog source. By chaining the values of your state constants,
you can change the encoding of your state machine.

Table 9–6. syn_encoding Attribute Values (Part 2 of 2)

Attribute Value Description

Example 9–29. Specifying User-Encoded States with the syn_encoding Attribute in VHDL

ARCHITECTURE rtl OF my_fsm IS
TYPE count_state is (zero, one, two, three);
ATTRIBUTE syn_encoding : STRING;
ATTRIBUTE syn_encoding OF count_state : TYPE IS "11 01 10 00";
SIGNAL present_state, next_state : count_state;

BEGIN

Example 9–30. Verilog-2001 and SystemVerilog Code: Specifying User-Encoded States with the
syn_encoding Attribute

(* syn_encoding = "user" *) reg [1:0] state;
parameter init = 0, last = 3, next = 1, later = 2;
always @ (state) begin
case (state)
init:
out = 2'b01;
next:
out = 2'b10;
later:
out = 2'b11;
last:
out = 2'b00;
endcase
end

9–38 Chapter 9: Quartus II Integrated Synthesis
Quartus II Synthesis Options

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

If you are also specifying a safe state machine (as described in “Safe State Machines”
on page 9–39), separate the encoding style value in the quotation marks from the safe
value with a comma, as follows: “safe, one-hot” or “safe, gray”.

Manually Specifying Enumerated Types Using the enum_encoding Attribute
By default, the Quartus II software one-hot encodes all user-defined enumerated
types. With the enum_encoding attribute, you can specify the logic encoding for an
enumerated type and override the default one-hot encoding to improve the logic
efficiency.

1 If an enumerated type represents the states of a state machine, using the
enum_encoding attribute to specify a manual state encoding prevents the compiler
from recognizing state machines based on the enumerated type. Instead, the compiler
processes these state machines as “regular” logic using the encoding specified by the
attribute, and they are not listed as state machines in the Report window for the
project. If you want to control the encoding for a recognized state machine, use the
State Machine Processing logic option and the syn_encoding synthesis attribute.

To use the enum_encoding attribute in a VHDL design file, associate the attribute
with the enumeration type whose encoding you want to control. The
enum_encoding attribute must follow the enumeration type definition but precede
its use. In addition, the attribute value must be a string literal that specifies either an
arbitrary user encoding or an encoding style of "default", "sequential",
"gray", "johnson", or "one-hot".

An arbitrary user encoding consists of a space-delimited list of encodings. The list
must contain as many encodings as there are enumeration literals in your
enumeration type. In addition, the encodings must all have the same length, and each
encoding must consist solely of values from the std_ulogic type declared by the
std_logic_1164 package in the IEEE library. In the code fragment of Example 9–31,
the enum_encoding attribute specifies an arbitrary user encoding for the
enumeration type fruit.

In this example, the enumeration literals are encoded as:

apple = "11"
orange = "01"
pear = "10"
mango = "00"

You might want to specify an encoding style, rather than a manual user encoding,
especially when the enumeration type has a large number of enumeration literals. The
Quartus II software can implement enumeration types with the different encoding
styles shown in Table 9–7.

Example 9–31. Specifying an Arbitrary User Encoding for Enumerated Type

type fruit is (apple, orange, pear, mango);
attribute enum_encoding : string;
attribute enum_encoding of fruit : type is "11 01 10 00";

Chapter 9: Quartus II Integrated Synthesis 9–39
Quartus II Synthesis Options

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Observe that in Example 9–31, the enum_encoding attribute manually specified a
gray encoding for the enumeration type fruit. This example could be written more
concisely by specifying the "gray" encoding style instead of a manual encoding, as
shown in Example 9–32.

Safe State Machines
The Safe State Machine option and corresponding syn_encoding attribute value
safe specify that the software should insert extra logic to detect an illegal state and
force the state machine’s transition to the reset state.

It is possible for a finite state machine to enter an illegal state—meaning the state
registers contain a value that does not correspond to any defined state. By default, the
behavior of the state machine that enters an illegal state is undefined. However, you
can set the syn_encoding attribute to safe or use the Safe State Machine logic
option if you want the state machine to recover deterministically from an illegal state.
The software inserts extra logic to detect an illegal state and forces the transition of the
state machine to the reset state. This option is most commonly used when the state
machine can enter an illegal state. The most common cause of this situation is a state
machine that has control inputs that come from another clock domain, such as the
control logic for a clock-crossing FIFO, because the state machine must have inputs
from another clock domain. This option protects only state machines by forcing them
into the reset state. All other registers in the design are not protected this way. You can
use this option if your design has asynchronous inputs. However, Altera recommends
using a synchronization register chain instead of relying on the safe state machine
option.

Table 9–7. enum_encoding Attribute Values

Attribute Value Description

"default" Use an encoding based on the number of enumeration literals in the enumeration type. If there are
fewer than five literals, use the "sequential" encoding. If there are more than five but fewer than
50 literals, use a "one-hot" encoding. Otherwise, use a "gray" encoding.

"sequential" Use a binary encoding in which the first enumeration literal in the enumeration type has encoding 0,
the second 1, and so on.

"gray" Use an encoding in which the encodings for adjacent enumeration literals differ by exactly one bit. An
N-bit gray code can represent 2N values.

"johnson" Use an encoding similar to a gray code. An N-bit Johnson code can represent at most 2N states but
requires less logic than a gray encoding.

"one-hot" The default encoding style requiring N bits, where N is the number of enumeration literals in the
enumeration type.

Example 9–32. Specifying the “gray” Encoding Style or Enumeration Type

type fruit is (apple, orange, pear, mango);
attribute enum_encoding : string;
attribute enum_encoding of fruit : type is "gray";

9–40 Chapter 9: Quartus II Integrated Synthesis
Quartus II Synthesis Options

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

The safe state machine value does not use any user-defined default logic from your
HDL code that corresponds to unreachable states. Verilog HDL and VHDL allow you
to explicitly specify a behavior for all states in the state machine, including
unreachable states. However, synthesis tools detect if state machine logic is
unreachable and minimize or remove the logic. Any flag signals or logic used in the
design to indicate such an illegal state are also removed. If the state machine is
implemented as safe, the recovery logic added by Quartus II integrated synthesis
forces its transition from an illegal state to the reset state.

The Safe State Machine option can be set globally, or on individual state machines. To
set this option, on the Analysis & Synthesis Settings page, select More Settings. In
the Existing option settings list, select Safe State Machine, and turn on this option in
the Setting list.

You can also use the Assignment Editor to turn on the Safe State Machine option for
specific state machines.

You can set the syn_encoding safe attribute on a state machine in HDL, as shown
in Example 9–33 through Example 9–35.

If you are also specifying an encoding style (as described in “Manually Specifying
State Assignments Using the syn_encoding Attribute” on page 9–36), separate the
encoding style value in the quotation marks with the safe value with a comma, as
follows: "safe, one-hot" or "safe, gray".

Safe state machine implementation can result in a noticeable area increase for the
design. Therefore, Altera recommends that you set this option only on the critical state
machines in the design where the safe mode is required, such as a state machine that
uses inputs from asynchronous clock domains. You can also reduce the necessity of
this option by correctly synchronizing inputs coming from other clock domains.

1 If the safe state machine assignment is made on an instance that is not recognized as
a state machine, or an entity that contains a state machine, the software takes no
action. You must restructure the code so that the instance is recognized and properly
inferred as a state machine.

f For guidelines to ensure that your state machine is correctly inferred, refer to the
Recommended HDL Coding Styles chapter in volume 1 of the Quartus II Handbook.

Example 9–33. Verilog HDL Code: a Safe State Machine Attribute

reg [2:0] my_fsm /* synthesis syn_encoding = "safe" */;

Example 9–34. Verilog-2001 and SystemVerilog Code: a Safe State Machine Attribute

(* syn_encoding = "safe" *) reg [2:0] my_fsm;

Example 9–35. VHDL Code: a Safe State Machine Attribute

ATTRIBUTE syn_encoding OF my_fsm : TYPE IS "safe";

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

Chapter 9: Quartus II Integrated Synthesis 9–41
Quartus II Synthesis Options

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Power-Up Level
This logic option causes a register (flipflop) to power up with the specified logic level,
either High (1) or Low (0). Registers in the device core hardware power up to 0 in all
Altera devices. For the register to power up with a logic level High specified using
this option, the compiler performs an optimization referred to as NOT-gate push back
on the register. NOT-gate push back adds an inverter to the input and the output of
the register so that the reset and power-up conditions appear to be high and the
device operates as expected. The register itself still powers up low, but the register
output is inverted so the signal arriving at all destinations is high. This option is
available for all Altera devices supported by the Quartus II software except
MAX® 3000A and MAX 7000S devices.

The Power-Up Level option supports wildcard characters, and you can apply this
option to any register, registered logic cell WYSIWYG primitive, or to a design entity
containing registers if you want to set the power level for all registers in the design
entity. If this option is assigned to a registered logic cell WYSIWYG primitive, such as
an atom primitive from a third-party synthesis tool, you must turn on the Perform
WYSIWYG Primitive Resynthesis logic option for it to take effect. You can also apply
the option to a pin with the logic configurations described in the following list:

■ If this option is turned on for an input pin, the option is transferred automatically
to the register that is driven by the pin if the following conditions are present:

■ There is no logic, other than inversion, between the pin and the register

■ The input pin drives the data input of the register

■ The input pin does not fan-out to any other logic

■ If this option is turned on for an output or bidirectional pin, it is transferred
automatically to the register that feeds the pin, if the following conditions are
present:

■ There is no logic, other than inversion, between the register and the pin

■ The register does not fan-out to any other logic

Inferred Power-Up Levels
Quartus II integrated synthesis reads default values for registered signals defined in
Verilog HDL and VHDL code, and converts the default values into Power-Up Level
settings. The software also synthesizes variables that are assigned values in Verilog
HDL initial blocks into power-up conditions. Synthesis of these default and initial
constructs enables the design’s synthesized behavior to match, as closely as possible,
the power-up state of the HDL code during a functional simulation.

For example, the following register declarations all set a power-up level of VCC or a
logic value “1”:

signal q : std_logic = '1'; -- power-up to VCC

reg q = 1'b1; // power-up to VCC

reg q;
initial begin q = 1'b1; end // power-up to VCC

9–42 Chapter 9: Quartus II Integrated Synthesis
Quartus II Synthesis Options

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

f For more information about NOT-gate push back, the power-up states for Altera
devices, and how the power-up level is affected by set and reset control signals, refer
to the Recommended HDL Coding Styles chapter in volume 1 of the Quartus II Handbook.

Power-Up Don’t Care
This logic option allows the compiler to optimize registers in the design that do not
have a defined power-up condition. This option is turned on by default.

For example, your design might have a register with its D input tied to VCC, and with
no clear signal or other secondary signals. If this option is enabled, the compiler can
choose for the register to power up to VCC. Therefore, the output of the register is
always VCC. The compiler can remove the register and connect its output to VCC. If you
turn this option off or if you set a Power-Up Level assignment of Low for this register,
the register transitions from GND to VCC when the design starts up on the first clock
signal. Thus, the register is not stuck at VCC and cannot be removed. Similarly, if the
register has a clear signal, it is not removed because after the clear is asserted, the
register transitions again to GND and back to VCC.

If the compiler performs a Power-Up Don’t Care optimization that allows it to remove
a register, it issues a message indicating it is doing so.

This project-wide option does not apply to registers that have the Power-Up Level
logic option set to either High or Low.

Remove Duplicate Registers
If you turn on this logic option, the compiler removes registers that are identical to
another register. If two registers generate the same logic, the compiler removes the
second register, and the first register fans out to the destinations of the second register.
Also, if the deleted register has different logic option assignments, the compiler
ignores them. This option is turned on by default.

Typically, you should use this option only if you want to prevent the compiler from
removing duplicate registers. That is, you should use this option only with the Off
setting. You can apply this option to an individual register or a design entity that
contains registers.

Preserve Registers
This attribute and logic option directs the compiler not to minimize or remove a
specified register during synthesis optimizations or register netlist optimizations.
Optimizations can eliminate redundant registers and registers with constant drivers;
this option prevents a register from being reduced to a constant or merged with a
duplicate register. This option can preserve a register so you can observe it during
simulation or with the SignalTap® II Embedded Logic Analyzer. Additionally, it can
preserve registers if you are creating a preliminary version of the design in which
secondary signals are not specified. You can also use the attribute to preserve a
duplicate of an I/O register so that one copy can be placed in an I/O cell and the
second can be placed in the core.

1 This option cannot preserve registers that have no fan-out. To prevent the removal of
registers with no fan-out, refer to “Noprune Synthesis Attribute/Preserve Fan-out
Free Register Node” on page 9–44.

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

Chapter 9: Quartus II Integrated Synthesis 9–43
Quartus II Synthesis Options

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

The Preserve Registers option prevents a register from being inferred as a state
machine.

You can set the Preserve Registers logic option in the Quartus II GUI or you can set
the preserve attribute in your HDL code, as shown in Example 9–36 through
Example 9–38. In these examples, the my_reg register is preserved.

1 In addition to preserve, the Quartus II software supports the syn_preserve
attribute name for compatibility with other synthesis tools.

1 The = 1 after the preserve in Example 9–36 and Example 9–37 is optional, because
the assignment uses a default value of 1 when it is specified.

Disable Register Merging/Don’t Merge Register
This logic option and attribute prevents the specified register from being merged with
other registers and prevents other registers from being merged with the specified
register. When applied to a design entity, it applies to all registers in the entity.

You can use this option to instruct the compiler to correctly use your timing
constraints for the register during synthesis. For example, if the register has a
multicycle constraint, this option prevents the compiler from merging other registers
into the specified register, avoiding unintended timing effects and functional
differences.

This option differs from the Preserve Register option because it does not prevent a
register with constant drivers or a redundant register from being removed.

You can set the Disable Register Merging logic option in the Quartus II GUI, or you
can set the dont_merge attribute in your HDL code, as shown in Example 9–39
through Example 9–41. In these examples, the my_reg register is prevented from
merges.

Example 9–36. Verilog HDL Code: syn_preserve Attribute

reg my_reg /* synthesis syn_preserve = 1 */;

Example 9–37. Verilog-2001 Code: syn_preserve Attribute

(* syn_preserve = 1 *) reg my_reg;

Example 9–38. VHDL Code: preserve Attribute

signal my_reg : stdlogic;
attribute preserve : boolean;
attribute preserve of my_reg : signal is true;

Example 9–39. Verilog HDL Code: dont_merge Attribute

reg my_reg /* synthesis dont_merge */;

Example 9–40. Verilog-2001 and SystemVerilog Code: dont_merge Attribute

(* dont_merge *) reg my_reg;

9–44 Chapter 9: Quartus II Integrated Synthesis
Quartus II Synthesis Options

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

Noprune Synthesis Attribute/Preserve Fan-out Free Register Node
This synthesis attribute and corresponding logic option direct the compiler to
preserve a fan-out-free register through the entire compilation flow. This is different
from the Preserve Registers option, which prevents a register from being reduced to a
constant or merged with a duplicate register. Standard synthesis optimizations
remove nodes that do not directly or indirectly feed a top-level output pin. This
option can retain a register so you can observe it in the Simulator or the SignalTap II
Embedded Logic Analyzer. Additionally, it can retain registers if you are creating a
preliminary version of the design in which the fan-out logic of the register is not
specified. This option is supported for inferred registers in the Arria GX, Stratix series,
Cyclone series, and MAX II device families.

You can set the Preserve Fan-out Free Register Node logic option in the Quartus II
GUI, or you can set the noprune attribute in your HDL code, as shown in
Example 9–42 though Example 9–44. In these examples, the my_reg register is
preserved.

1 You must use the noprune attribute instead of the logic option if the register has no
immediate fan-out in its module or entity. If you do not use the synthesis attribute,
registers with no fan-out are removed (or “pruned”) during Analysis and Elaboration
before the logic synthesis stage applies any logic options. If the register has no fan-out
in the full design, but has fan-out within its module or entity, you can use the logic
option to retain the register through compilation.

The attribute name syn_noprune is supported for compatibility with other synthesis
tools.

Example 9–41. VHDL Code: dont_merge Attribute

signal my_reg : stdlogic;
attribute dont_merge : boolean;
attribute dont_merge of my_reg : signal is true;

Example 9–42. Verilog HDL Code: syn_noprune Attribute

reg my_reg /* synthesis syn_noprune */;

Example 9–43. Verilog-2001 and SystemVerilog Code: noprune Attribute

(* noprune *) reg my_reg;

Example 9–44. VHDL Code: noprune Attribute

signal my_reg : stdlogic;
attribute noprune: boolean;
attribute noprune of my_reg : signal is true;

Chapter 9: Quartus II Integrated Synthesis 9–45
Quartus II Synthesis Options

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Keep Combinational Node/Implement as Output of Logic Cell
This synthesis attribute and corresponding logic option direct the Compiler to keep a
wire or combinational node through logic synthesis minimizations and netlist
optimizations. A wire that has a keep attribute or a node that has the Implement as
Output of Logic Cell logic option applied becomes the output of a logic cell in the
final synthesis netlist, and the name of the logic cell will be the same as the name of
the wire or node. You can use this directive to make combinational nodes visible to the
SignalTap II Embedded Logic Analyzer.

1 The option cannot keep nodes that have no fan-out. Node names cannot be
maintained for wires with tri-state drivers, or if the signal feeds a top-level pin of the
same name (in this case, the node name is changed to a name such as
<net name>~buf0).

You can use the Ignore LCELL Buffers logic option to direct Analysis and Synthesis
to ignore logic cell buffers created by the Implement as Output of Logic Cell logic
option or the LCELL primitive. If you apply this logic option globally or to an entity, it
affects all lower-level entities in the hierarchy path.

1 To avoid unintended design optimizations, make sure the Ignore LCELL Buffers
logic option is not inherited by an entity instantiated with Altera or third-party IP that
relies on logic cell buffers for correct behavior. For example, if an IP core uses logic cell
buffers to manage high fan-out signals and inherits the Ignore LCELL Buffers logic
option, the target device may no longer function properly.

You can turn off the Ignore LCELL Buffers logic option for a specific entity to
override any assignments inherited from higher-level entities in the hierarchy path if
logic cell buffers created by the Implement as Output of Logic Cell logic option or
the LCELL primitive are required for correct behavior.

You can set the Implement as Output of Logic Cell logic option in the Quartus II
GUI, or you can set the keep attribute in your HDL code, as shown in Example 9–45
through Example 9–47. In these examples, the Compiler maintains the node name
my_wire.

1 In addition to keep, the Quartus II software supports the syn_keep attribute name
for compatibility with other synthesis tools.

Example 9–45. Verilog HDL Code: keep Attribute

wire my_wire /* synthesis keep = 1 */;

Example 9–46. Verilog-2001 Code: keep Attribute

(* keep = 1 *) wire my_wire;

Example 9–47. VHDL Code: syn_keep Attribute

signal my_wire: bit;
attribute syn_keep: boolean;
attribute syn_keep of my_wire: signal is true;

9–46 Chapter 9: Quartus II Integrated Synthesis
Quartus II Synthesis Options

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

Disabling Synthesis Netlist Optimizations with dont_retime Attribute
This attribute disables synthesis retiming optimizations on the specified register.
When applied to a design entity, it applies to all registers in the entity.

You can use this option to turn off retiming optimizations and prevent node name
changes so that the compiler can correctly use your timing constraints for the register.

You can set the Netlist Optimizations logic option to Never Allow in the Quartus II
GUI to disable retiming along with other synthesis netlist optimizations, or you can
set the dont_retime attribute in your HDL code, as shown in Example 9–48 through
Example 9–50. In these examples, the my_reg register is prevented from being
retimed.

1 For compatibility with third-party synthesis tools, Quartus II integrated synthesis also
supports the attribute syn_allow_retiming. To disable retiming, set
syn_allow_retiming to 0 (Verilog HDL) or false (VHDL). This attribute does not
have any effect when set to 1 or true.

Disabling Synthesis Netlist Optimizations with dont_replicate Attribute
This attribute disables synthesis replication optimizations on the specified register.
When applied to a design entity, it applies to all registers in the entity.

You can use this option to turn off register replication (or duplication) optimizations
so that the compiler can use your timing constraints for the register.

You can set the Netlist Optimizations logic option to Never Allow in the Quartus II
GUI to disable replication along with other synthesis netlist optimizations, or you can
set the dont_replicate attribute in your HDL code, as shown in Example 9–51
through Example 9–53. In these examples, the my_reg register is prevented from
being replicated.

Example 9–48. Verilog HDL Code: dont_retime Attribute

reg my_reg /* synthesis dont_retime */;

Example 9–49. Verilog-2001 and SystemVerilog Code: dont_retime Attribute

(* dont_retime *) reg my_reg;

Example 9–50. VHDL Code: dont_retime Attribute

signal my_reg : std_logic;
attribute dont_retime : boolean;
attribute dont_retime of my_reg : signal is true;

Example 9–51. Verilog HDL Code: dont_replicate Attribute

reg my_reg /* synthesis dont_replicate */;

Example 9–52. Verilog-2001 and SystemVerilog Code: dont_replicate Attribute

(* dont_replicate *) reg my_reg;

Chapter 9: Quartus II Integrated Synthesis 9–47
Quartus II Synthesis Options

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

1 For compatibility with third-party synthesis tools, Quartus II integrated synthesis also
supports the attribute syn_replicate. To disable replication, set syn_replicate
to 0 (Verilog HDL) or false (VHDL). This attribute does not have any effect when set
to 1 or true.

Maximum Fan-Out
This attribute and logic option directs the compiler to control the number of
destinations fed by a node. The compiler duplicates a node and splits its fan-out until
the individual fan-out of each copy falls below the maximum fan-out restriction. You
can apply this option to a register or a logic cell buffer, or to a design entity that
contains these elements. You can use this option to reduce the load of critical signals,
which can improve performance. You can use the option to instruct the compiler to
duplicate a register that feeds nodes in different locations on the target device.
Duplicating the register can allow the Fitter to place these new registers closer to their
destination logic, minimizing routing delay.

This option is available for all devices supported in the Quartus II software except
MAX 3000 and MAX 7000 devices. To turn off the option for a given node if the option
is set at a higher level of the design hierarchy, in the Netlist Optimizations logic
option, select Never Allow. If not disabled by the Netlist Optimizations option, the
maximum fan-out constraint is honored as long as the following conditions are met:

■ The node is not part of a cascade, carry, or register cascade chain.

■ The node does not feed itself.

■ The node feeds other logic cells, DSP blocks, RAM blocks, and/or pins through
data, address, clock enable, and other ports, but not through any asynchronous
control ports (such as asynchronous clear).

The software does not create duplicate nodes in these cases, either because there is no
clear way to duplicate the node, or to avoid the small differences in timing which
could produce functional differences in the implementation (in the third condition
above where asynchronous control signals are involved). If the constraint cannot be
applied because one of these conditions is not met, the Quartus II software issues a
message indicating that it ignored the maximum fan-out assignment. To instruct the
software not to check node destinations for possible problems like the third condition,
you can set the Netlist Optimizations logic option to Always Allow for a given node.

1 If you have enabled any of the Quartus II netlist optimizations that affect registers,
add the preserve attribute to any registers to which you have set a maxfan
attribute. The preserve attribute ensures that the registers are not affected by any of
the netlist optimization algorithms, such as register retiming.

f For details about netlist optimizations, refer to the Netlist Optimizations and Physical
Synthesis chapter in volume 2 of the Quartus II Handbook.

Example 9–53. VHDL Code: dont_replicate Attribute

signal my_reg : std_logic;
attribute dont_replicate : boolean;
attribute dont_replicate of my_reg : signal is true;

http://www.altera.com/literature/hb/qts/qts_qii52007.pdf
http://www.altera.com/literature/hb/qts/qts_qii52007.pdf

9–48 Chapter 9: Quartus II Integrated Synthesis
Quartus II Synthesis Options

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

You can set the Maximum Fan-Out logic option in the Quartus II GUI; this option
supports wildcard characters. You can also set the maxfan attribute in your HDL
code, as shown in Example 9–54 through Example 9–56. In these examples, the
compiler duplicates the clk_gen register, so its fan-out is not greater than 50.

1 In addition to maxfan, the Quartus II software supports the syn_maxfan attribute
for compatibility with other synthesis tools.

Controlling Clock Enable Signals with Auto Clock Enable Replacement and
direct_enable

The Auto Clock Enable Replacement logic option allows the software to find logic
that feeds a register and move the logic to the register’s clock enable input port. The
option is on by default. You can set this option to Off for individual registers or
design entities to solve fitting or performance issues with designs that have many
clock enables. Turning the option off prevents the software from using the register’s
clock enable port. The software implements the clock enable functionality using
multiplexers in logic cells.

If specific logic is not automatically moved to a clock enable input with the Auto
Clock Enable Replacement logic option, you can instruct the software to use a direct
clock enable signal. Applying the direct_enable attribute to a specific signal
instructs the software to use the clock enable port of a register to implement the
signal. The attribute ensures that the clock enable port is driven directly by the signal,
and the signal is not optimized or combined with any other logic.

Example 9–57 through Example 9–59 show how to set this attribute to ensure that the
signal is preserved and used directly as a clock enable.

1 In addition to direct_enable, the Quartus II software supports the
syn_direct_enable attribute name for compatibility with other synthesis tools.

Example 9–54. Verilog HDL Code: syn_maxfan Attribute

reg clk_gen /* synthesis syn_maxfan = 50 */;

Example 9–55. Verilog-2001 Code: maxfan Attribute

(* maxfan = 50 *) reg clk_gen;

Example 9–56. VHDL Code: maxfan Attribute

signal clk_gen : stdlogic;
attribute maxfan : signal ;
attribute maxfan of clk_gen : signal is 50;

Example 9–57. Verilog HDL Code: direct_enable attribute

wire my_enable /* synthesis direct_enable = 1 */ ;

Chapter 9: Quartus II Integrated Synthesis 9–49
Quartus II Synthesis Options

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Megafunction Inference Control
The Quartus II Compiler automatically recognizes certain types of HDL code and
infers the appropriate megafunction. The software uses the Altera megafunction code
when compiling your design, even when you do not specifically instantiate the
megafunction. The software infers megafunctions to take advantage of logic that is
optimized for Altera devices. The area and performance of such logic can be better
than the results obtained by inferring generic logic from the same HDL code.

Additionally, you must use megafunctions to access certain architecture-specific
features, such as RAM, DSP blocks, and shift registers that generally provide
improved performance compared with basic logic cells.

f For details about coding style recommendations when targeting megafunctions in
Altera devices, refer to the Recommended HDL Coding Styles chapter in volume 1 of the
Quartus II Handbook.

The Quartus II software provides options to control the inference of certain types of
megafunctions, as described in the following subsections.

Multiply-Accumulators and Multiply-Adders
Use the Auto DSP Block Replacement logic option to control DSP block inference for
multiply-accumulations and multiply-adders. This option is turned on by default. To
disable inference, turn off this option for your whole project on the Analysis &
Synthesis Settings page of the Settings dialog box, or disable the option for a specific
block with the Assignment Editor.

1 Any registers that the software maps to the ALTMULT_ACCUM and
ALTMULT_ADD megafunctions and places in DSP blocks are not available in the
Simulator because their node names do not exist after synthesis.

Shift Registers
Use the Auto Shift Register Replacement logic option to control shift register
inference. This option has three settings: Off, Auto and Always. Auto is the default
setting in which Quartus II integrated synthesis decides which shift registers to
replace or leave in registers. Putting shift registers in memory saves logic area, but can
have a negative effect on fmax. Quartus II integrated synthesis uses the optimization
technique setting, logic and RAM utilization of the design, and timing information
from Timing-Driven Synthesis to determine which shift registers are located in
memory and which are located in registers. To disable inference, turn off this option
for your whole project on the Analysis & Synthesis Settings page of the Settings
dialog box by clicking More Settings and setting the option to Off. You can also

Example 9–58. Verilog-2001 and SystemVerilog Code: syn_direct_enable attribute

(* syn_direct_enable *) wire my_enable;

Example 9–59. VHDL Code: direct_enable attribute

attribute direct_enable: boolean;
attribute direct_enable of my_enable: signal is true;

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

9–50 Chapter 9: Quartus II Integrated Synthesis
Quartus II Synthesis Options

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

disable the option for a specific block with the Assignment Editor. Even if the logic
option is set to On or Auto, the software might not infer small shift registers because
small shift registers typically do not benefit from implementation in dedicated
memory. However, you can use the Allow Any Shift Register Size for Recognition
logic option to instruct synthesis to infer a shift register even when its size is
considered too small.

1 The registers that the software maps to the ALTSHIFT_TAPS megafunction and places
in RAM are not available in the Simulator because their node names do not exist after
synthesis.

The Auto Shift Register Replacement logic option is turned off automatically when a
formal verification tool is selected on the EDA Tool Settings page. The software
issues a warning and lists shift registers that would have been inferred if no formal
verification tool was selected in the compilation report. To allow the use of a
megafunction for the shift register in the formal verification flow, you can either
instantiate a shift register explicitly using the MegaWizard™ Plug-In Manager or make
the shift register into a black box in a separate entity/module.

RAM and ROM
Use the Auto RAM Replacement and Auto ROM Replacement logic options to
control RAM and ROM inference, respectively. These options are turned on by
default. To disable inference, turn off the appropriate option for your whole project on
the Analysis & Synthesis Settings page of the Settings dialog box by clicking More
Settings and setting the option to Off. You can also disable the option for a specific
block with the Assignment Editor.

1 Although inferred shift registers are implemented in RAM blocks, you cannot turn off
the Auto RAM Replacement option to disable shift register replacement. Use the
Auto Shift Register Replacement option (refer to “Shift Registers”).

The software might not infer very small RAM or ROM blocks because very small
memory blocks can typically be implemented more efficiently by using the registers
in the logic. However, you can use the Allow Any RAM Size for Recognition and
Allow Any ROM Size for Recognition logic options to instruct synthesis to infer a
memory block even when its size is considered too small.

1 The Auto ROM Replacement logic option is automatically turned off when a formal
verification tool is selected in the EDA Tool Settings page. A warning is issued and a
report panel lists ROMs that would have been inferred if no formal verification tool
was selected. To allow the use of a megafunction for the shift register in the formal
verification flow, you can either instantiate a ROM explicitly using the MegaWizard
Plug-In Manager or create a black box for the ROM in a separate entity or module.

Although formal verification tools do not support inferred RAM blocks, because of
the importance of inferring RAM in many designs, the Auto RAM Replacement logic
option remains on when a formal verification tool is selected in the EDA Tool
Settings page. The Quartus II software automatically performs black box instance for
any module or entity that contains a RAM block that is inferred. The software issues a

Chapter 9: Quartus II Integrated Synthesis 9–51
Quartus II Synthesis Options

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

warning and lists the black box that is created in the compilation report. This block
box allows formal verification tools to proceed; however, the entire module or entity
containing the RAM cannot be verified in the tool. Altera recommends that you
explicitly instantiate RAM blocks in separate modules or entities so that as much logic
as possible can be verified by the formal verification tool.

Resource Aware RAM, ROM, and Shift-Register Inference
Beginning with the Quartus II software version 9.1, Quartus II integrated synthesis
takes resource usage into account when inferring RAM, ROM, and shift registers.
During RAM, ROM, and shift register inferencing, synthesis looks at the number of
memories available in the current device and does not infer more memory than is
available to avoid a no-fit. Synthesis tries to select the memories that are not inferred
in a way that aims at the smallest increase in logic and registers.

Resource aware RAM, ROM and shift register inference is controlled by the Resource
Aware Inference for Block RAM option and is turned on by default. You can disable
this option for the entire project in the More Analysis & Synthesis Settings dialog
box, or per partition in the Assignment Editor.

When the Auto setting is selected, resource aware RAM, ROM, and shift register
inference uses the resource counts from the largest device.

For designs with multiple partitions, Quartus II integrated synthesis considers one
partition at a time. Therefore, for each partition, it assumes that all RAM blocks are
available to that partition. If this causes a no-fit, the number of RAM blocks available
per partition can be limited with the following settings in the assignment editor:
Maximum Number of M512 Memory Blocks, Maximum Number of M4K/M9K
Memory Blocks, and Maximum Number of M-RAM/M144K Memory Blocks. These
options are also used by the balancer. For more information, refer to “Limiting DSP
and RAM Block Usage in Partitions” on page 9–31.

RAM to Logic Cell Conversion
The Auto RAM to Logic Cell Conversion option allows Quartus II integrated
synthesis to convert RAM blocks that are small in size to logic cells if the logic cell
implementation is deemed to give better quality of results. Only single-port or
simple-dual port RAMs with no initialization files can be converted to logic cells. This
option is off by default. You can set this option globally or apply it to individual RAM
nodes. You can enable this option by turning on the appropriate option for your
whole project in the More Analysis & Synthesis Settings dialog box.

For Arria GX and Stratix series of devices, the software uses the following rules to
determine whether a RAM should be placed in logic cells or a dedicated RAM block:

■ If the number of words is less than 16, use a RAM block if the total number of bits
is greater than or equal to 64

■ If the number of words is greater than or equal to 16, use a RAM block if the total
number of bits is greater than or equal to 32

■ Otherwise, implement the RAM in logic cells

For the Cyclone series of devices, the software uses the following rules:

■ If the number of words is greater than or equal to 64, use a RAM block

9–52 Chapter 9: Quartus II Integrated Synthesis
Quartus II Synthesis Options

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

■ If the number of words is greater than or equal to 16 and less than 64, use a RAM
block if the total number of bits is greater than or equal to 128

■ Otherwise, implement the RAM in logic cells

RAM Style and ROM Style—for Inferred Memory
These attributes specify the implementation for an inferred RAM or ROM block. You
can specify the type of TriMatrix embedded memory block to be used, or specify the
use of standard logic cells (LEs or ALMs). The attributes are supported only for device
families with TriMatrix embedded memory blocks.

The ramstyle and romstyle attributes take a single string value. The values
"M512", "M4K", "M-RAM", "MLAB", "M9K", and "M144K" (as applicable for the target
device family) indicate the type of memory block to use for the inferred RAM or
ROM. If you set the attribute to a block type that does not exist in the target device
family, the software generates a warning and ignores the assignment. The value
logic indicates that the RAM or ROM should be implemented in regular logic rather
than dedicated memory blocks. You can set the attribute on a module or entity, in
which case it specifies the default implementation style for all inferred memory blocks
in the immediate hierarchy. You can also set the attribute on a specific signal (VHDL)
or variable (Verilog HDL) declaration, in which case it specifies the preferred
implementation style for that specific memory, overriding the default implementation
style.

1 If you specify a value of logic, the memory still appears as a RAM or ROM block in
the RTL Viewer, but it is converted to regular logic during a later synthesis step.

In addition to ramstyle and romstyle, the Quartus II software supports the
syn_ramstyle attribute name for compatibility with other synthesis tools.

Example 9–60 through Example 9–62 specify that all memory in the module or entity
my_memory_blocks should be implemented using a specific type of block.

Example 9–63 through Example 9–65 specify that the inferred memory my_ram or
my_rom should be implemented using regular logic instead of a TriMatrix memory
block.

Example 9–60. Verilog-1995 Code: Applying a romstyle Attribute to a Module Declaration

module my_memory_blocks (...) /* synthesis romstyle = "M4K" */;

Example 9–61. Verilog-2001 and SystemVerilog Code: Applying a ramstyle Attribute to a Module
Declaration

 (* ramstyle = "M512" *) module my_memory_blocks (...);

Example 9–62. VHDL Code: Applying a romstyle Attribute to an Architecture

architecture rtl of my_ my_memory_blocks is
attribute romstyle : string;
attribute romstyle of rtl : architecture is "M-RAM";
begin

Chapter 9: Quartus II Integrated Synthesis 9–53
Quartus II Synthesis Options

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

You can control the depth of an inferred memory block using the max_depth
attribute. By using this attribute, you can optimize the usage of the memory block.
Example 9–66 through Example 9–68 specify the depth of the inferred memory mem
using the max_depth synthesis attribute.

The syntax for setting these attributes in HDL is the same as the syntax for other
synthesis attributes, as shown in “Synthesis Attributes” on page 9–24.

Turning Off the Add Pass-Through Logic to Inferred RAMs no_rw_check Attribute
Setting the no_rw_check value for the ramstyle attribute, or turning off the
corresponding global Add Pass-Through Logic to Inferred RAMs logic option
indicates that your design does not depend on the behavior of the inferred RAM
when there are reads and writes to the same address in the same clock cycle. If you
specify the attribute or turn off the logic option, the Quartus II software can choose a
read-during-write behavior instead of using the read-during-write behavior of your
HDL source code.

Example 9–63. Verilog-1995 Code: Applying a syn_ramstyle Attribute to a Variable Declaration

reg [0:7] my_ram[0:63] /* synthesis syn_ramstyle = "logic" */;

Example 9–64. Verilog-2001 and SystemVerilog Code: Applying a romstyle Attribute to a Variable
Declaration

(* romstyle = "logic" *) reg [0:7] my_rom[0:63];

Example 9–65. VHDL Code: Applying a ramstyle Attribute to a Signal Declaration

type memory_t is array (0 to 63) of std_logic_vector (0 to 7);
signal my_ram : memory_t;
attribute ramstyle : string;
attribute ramstyle of my_ram : signal is "logic";

Example 9–66. Verilog-1995 Code: Applying a max_depth Attribute to a Variable Declaration

reg [7:0] mem [127:0] /* synthesis max_depth = 2048 */

Example 9–67. Verilog-2001 and SystemVerilog Code: Applying a max_depth Attribute to a Variable
Declaration

(* max_depth = 2048*) reg [7:0] mem [127:0];

Example 9–68. VHDL Code: Applying a max_depth Attribute to a Variable Declaration

type ram_block is array (0 to 31) of std_logic_vector (2 downto 0);
signal mem : ram_block;
attribute max_depth : natural;
attribute max_depth OF mem : signal is 2048;

9–54 Chapter 9: Quartus II Integrated Synthesis
Quartus II Synthesis Options

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

In some cases, an inferred RAM must be mapped into regular logic cells because it has
a read-during-write behavior that is not supported by the TriMatrix memory blocks in
your target device. In other cases, the Quartus II software must insert extra logic to
mimic read-during-write behavior of the HDL source, increasing the area of your
design and potentially reducing its performance. In these cases, you can use the
attribute to specify that the software can implement the RAM directly in a TriMatrix
memory block without using logic. You can also use the attribute to prevent a
warning message for dual-clock RAMs in the case that the inferred behavior in the
device does not exactly match the read-during-write conditions described in the HDL
code.

f For more information about recommended styles for inferring RAM and some of the
issues involved with different read-during-write conditions, refer to the Recommended
HDL Coding Styles chapter in volume 1 of the Quartus II Handbook.

To set the Add Pass-Through Logic to Inferred RAMs logic option with the
Quartus II GUI, click More Settings on the Analysis & Synthesis Settings page of the
Settings dialog box. Example 9–69 and Example 9–70 use two addresses and
normally require extra logic after the RAM to ensure that the read-during-write
conditions in the device match the HDL code. If a defined read-during-write
condition is not required in your design, the extra logic is not needed. With the
no_rw_check attribute, Quartus II integrated synthesis does not generate the extra
logic.

Example 9–69. Verilog HDL Inferred RAM Using no_rw_check Attribute

module ram_infer (q, wa, ra, d, we, clk);
output [7:0] q;
input [7:0] d;
input [6:0] wa;
input [6:0] ra;
input we, clk;
reg [6:0] read_add;
(* ramstyle = "no_rw_check" *) reg [7:0] mem [127:0];
always @ (posedge clk) begin

if (we)
mem[wa] <= d;

read_add <= ra;
end
assign q = mem[read_add];

endmodule

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

Chapter 9: Quartus II Integrated Synthesis 9–55
Quartus II Synthesis Options

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

You can use a ramstyle attribute with the MLAB value so that the Quartus II software
can infer a small RAM block and place it in an MLAB.

1 This attribute is also useful in cases in which some asynchronous RAM blocks might
be coded with read-during-write behavior that does not match the Stratix III
architecture. Thus, the device behavior would not exactly match the behavior
described in the code. If the difference in behavior is acceptable in your design, use
the ramstyle attribute with the no_rw_check value to specify that the software
should not check the read-during-write behavior when inferring the RAM. When this
attribute is set, Quartus II integrated synthesis allows the behavior of the output to be
different when the asynchronous read occurs on an address that had a write on the
most recent clock edge. That is, functional HDL simulation results will not match the
hardware behavior if you write to an address that is being read.

To include both attributes, set the value of the ramstyle attribute to "MLAB,
no_rw_check".

Example 9–71 and Example 9–72 show the method of setting two values to the
ramstyle attribute using a small asynchronous RAM block, with the ramstyle
synthesis attribute set so that the memory can be implemented in the MLAB memory
block and the read-during-write behavior is not important. Without the attribute, this
design requires 512 registers and 240 ALUTs. With the attribute, the design requires 8
memory ALUTs and just 15 registers.

Example 9–70. VHDL Inferred RAM Using no_rw_check Attribute

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY ram IS
PORT (

clock: IN STD_LOGIC;
data: IN STD_LOGIC_VECTOR (2 DOWNTO 0);
write_address: IN INTEGER RANGE 0 to 31;
read_address: IN INTEGER RANGE 0 to 31;
we: IN STD_LOGIC;
q: OUT STD_LOGIC_VECTOR (2 DOWNTO 0));

END ram;

ARCHITECTURE rtl OF ram IS
TYPE MEM IS ARRAY(0 TO 31) OF STD_LOGIC_VECTOR(2 DOWNTO 0);
SIGNAL ram_block: MEM;
ATTRIBUTE ramstyle : string;
ATTRIBUTE ramstyle of ram_block : signal is "no_rw_check";
SIGNAL read_address_reg: INTEGER RANGE 0 to 31;

BEGIN
PROCESS (clock)
BEGIN

IF (clock'event AND clock = '1') THEN
IF (we = '1') THEN

ram_block(write_address) <= data;
END IF;
read_address_reg <= read_address;

END IF;
END PROCESS;
q <= ram_block(read_address_reg);

END rtl;

9–56 Chapter 9: Quartus II Integrated Synthesis
Quartus II Synthesis Options

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

RAM Initialization File—for Inferred Memory
The ram_init_file attribute specifies the initial contents of an inferred memory in
the form of a Memory Initialization File (.mif). The attribute takes a string value
containing the name of the RAM initialization file.

Example 9–71. Verilog HDL Inferred RAM Using no_rw_check and MLAB Attributes

module async_ram (
 input [5:0] addr,
 input [7:0] data_in,
 input clk,
 input write,
 output [7:0] data_out);

 (* ramstyle = "MLAB, no_rw_check" *) reg [7:0] mem[0:63];

 assign data_out = mem[addr];

 always @ (posedge clk)
 begin
 if (write)
 mem[addr] = data_in;
 end
endmodule

Example 9–72. VHDL Inferred RAM Using no_rw_check and MLAB Attributes

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
ENTITY ram IS

PORT (
clock: IN STD_LOGIC;
data: IN STD_LOGIC_VECTOR (2 DOWNTO 0);
write_address: IN INTEGER RANGE 0 to 31;
read_address: IN INTEGER RANGE 0 to 31;
we: IN STD_LOGIC;
q: OUT STD_LOGIC_VECTOR (2 DOWNTO 0));

END ram;

ARCHITECTURE rtl OF ram IS
TYPE MEM IS ARRAY(0 TO 31) OF STD_LOGIC_VECTOR(2 DOWNTO 0);
SIGNAL ram_block: MEM;
ATTRIBUTE ramstyle : string;
ATTRIBUTE ramstyle of ram_block : signal is "MLAB , no_rw_check";
SIGNAL read_address_reg: INTEGER RANGE 0 to 31;

BEGIN
PROCESS (clock)
BEGIN

IF (clock'event AND clock = '1') THEN
IF (we = '1') THEN

ram_block(write_address) <= data;
END IF;
read_address_reg <= read_address;

END IF;
END PROCESS;
q <= ram_block(read_address_reg);

END rtl;

Chapter 9: Quartus II Integrated Synthesis 9–57
Quartus II Synthesis Options

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

1 In VHDL, you can also initialize the contents of an inferred memory by specifying a
default value for the corresponding signal. In Verilog HDL, you can use an initial
block to specify the memory contents. Quartus II integrated synthesis automatically
converts the default value into a .mif for the inferred RAM.

Multiplier Style—for Inferred Multipliers
The multstyle attribute specifies the implementation style for multiplication
operations (*) in your HDL source code. You can use this attribute to specify whether
you prefer the compiler to implement a multiplication operation in general logic or
dedicated hardware, if available in the target device.

The multstyle attribute takes a string value of "logic" or "dsp", indicating a
preferred implementation in logic or in dedicated hardware, respectively. In Verilog
HDL, apply the attribute to a module declaration, a variable declaration, or a specific
binary expression containing the * operator. In VHDL, apply the synthesis attribute to
a signal, variable, entity, or architecture.

1 Specifying a multstyle of "dsp" does not guarantee that the Quartus II software
can implement a multiplication in dedicated DSP hardware. The final implementation
depends on several conditions, including the availability of dedicated hardware in the
target device, the size of the operands, and whether or not one or both operands are
constant.

In addition to multstyle, the Quartus II software supports the syn_multstyle
attribute name for compatibility with other synthesis tools.

When applied to a Verilog HDL module declaration, the attribute specifies the default
implementation style for all instances of the * operator in the module. For example, in
the following code examples, the multstyle attribute directs the Quartus II software to
implement all multiplications inside module my_module in the dedicated
multiplication hardware.

Example 9–73. Verilog-1995 Code: Applying a ram_init_file Attribute

reg [7:0] mem[0:255] /* synthesis ram_init_file
= " my_init_file.mif" */;

Example 9–74. Verilog-2001 Code: Applying a ram_init_file Attribute

(* ram_init_file = "my_init_file.mif" *) reg [7:0] mem[0:255];

Example 9–75. VHDL Code: Applying a ram_init_file Attribute

type mem_t is array(0 to 255) of unsigned(7 downto 0);
signal ram : mem_t;
attribute ram_init_file : string;
attribute ram_init_file of ram :
signal is "my_init_file.mif";

Example 9–76. Verilog-1995 Code: Applying a multstyle Attribute to a Module Declaration

module my_module (...) /* synthesis multstyle = "dsp" */;

9–58 Chapter 9: Quartus II Integrated Synthesis
Quartus II Synthesis Options

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

When applied to a Verilog HDL variable declaration, the attribute specifies the
implementation style to be used for a multiplication operator which has a result that
is directly assigned to the variable. It overrides the multstyle attribute associated
with the enclosing module, if present. In Example 9–78 and Example 9–79, the
multstyle attribute applied to variable result directs the Quartus II software to
implement a * b in general logic rather than the dedicated hardware.

When applied directly to a binary expression containing the * operator, the attribute
specifies the implementation style for that specific operator alone and overrides any
multstyle attribute associated with the target variable or enclosing module. In
Example 9–80, the multstyle attribute indicates that a * b must be implemented
in the dedicated hardware.

1 You cannot use Verilog-1995 attribute syntax to apply the multstyle attribute to a
binary expression.

When applied to a VHDL entity or architecture, the attribute specifies the default
implementation style for all instances of the * operator in the entity or architecture. In
Example 9–81, the multstyle attribute directs the Quartus II software to use
dedicated hardware, if possible, for all multiplications inside architecture rtl of
entity my_entity.

Example 9–77. Verilog-2001 Code: Applying a multstyle Attribute to a Module Declaration

(* multstyle = "dsp" *) module my_module(...);

Example 9–78. Verilog-2001 Code: Applying a multstyle Attribute to a Variable Declaration

wire [8:0] a, b;
(* multstyle = "logic" *) wire [17:0] result;
assign result = a * b; //Multiplication must be

//directly assigned to result

Example 9–79. Verilog-1995 Code: Applying a multstyle Attribute to a Variable Declaration

wire [8:0] a, b;
wire [17:0] result /* synthesis multstyle = "logic" */;
assign result = a * b; //Multiplication must be

//directly assigned to result

Example 9–80. Verilog-2001 Code: Applying a multstyle Attribute to a Binary Expression

wire [8:0] a, b;
wire [17:0] result;
assign result = a * (* multstyle = "dsp" *) b;

Example 9–81. VHDL Code: Applying a multstyle Attribute to an Architecture

architecture rtl of my_entity is
attribute multstyle : string;
attribute multstyle of rtl : architecture is "dsp";

begin

Chapter 9: Quartus II Integrated Synthesis 9–59
Quartus II Synthesis Options

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

When applied to a VHDL signal or variable, the attribute specifies the
implementation style to be used for all instances of the * operator which has a result
that is directly assigned to the signal or variable. It overrides the multstyle attribute
associated with the enclosing entity or architecture, if present. In Example 9–82, the
multstyle attribute associated with signal result directs the Quartus II software
to implement a * b in general logic rather than the dedicated hardware.

Full Case
A Verilog HDL case statement is considered full when its case items cover all possible
binary values of the case expression or when a default case statement is present. A
full_case attribute attached to a case statement header that is not full forces the
unspecified states to be treated as a “don’t care” value. VHDL case statements must
be full, so the attribute does not apply to VHDL.

f Using this attribute on a case statement that is not full avoids the latch inference
problems discussed in the Design Recommendations for Altera Devices and the Quartus II
Design Assistant chapter in volume 1 of the Quartus II Handbook.

1 Latches have limited support in formal verification tools. It is important to ensure that
you do not infer latches unintentionally; for example, through an incomplete case
statement when using formal verification. Formal verification tools do support the
full_case synthesis attribute (with limited support for attribute syntax, as
described in “Synthesis Attributes” on page 9–24).

When you use the full_case attribute, there is a potential cause for a simulation
mismatch between the Verilog HDL functional and the post-Quartus II simulation
because unknown case statement cases can still function like latches during functional
simulation. For example, a simulation mismatch can occur with the code in
Example 9–83 when sel is 2'b11 because a functional HDL simulation output
behaves like a latch while the Quartus II simulation output behaves as a “don’t care”
value.

1 Altera recommends making the case statement “full” in your regular HDL code,
instead of using the full_case attribute.

The case statement in Example 9–83 is not full because not all binary values for sel
are specified. Because the full_case attribute is used, synthesis treats the output as
“don’t care” when the sel input is 2'b11.

Example 9–82. VHDL Code: Applying a multstyle Attribute to a Signal or Variable

signal a, b : unsigned(8 downto 0);
signal result : unsigned(17 downto 0);

attribute multstyle : string;
attribute multstyle of result : signal is "logic";
result <= a * b;

http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.altera.com/literature/hb/qts/qts_qii51006.pdf

9–60 Chapter 9: Quartus II Integrated Synthesis
Quartus II Synthesis Options

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

Verilog-2001 syntax also accepts the statements in Example 9–84 in the case header
instead of the comment form shown in Example 9–83.

Parallel Case
The parallel_case attribute indicates that a Verilog HDL case statement should be
considered parallel; that is, only one case item can be matched at a time. Case items in
Verilog HDL case statements might overlap. To resolve multiple matching case items,
the Verilog HDL language defines a priority relationship among case items in which
the case statement always executes the first case item that matches the case expression
value. By default, the Quartus II software implements the extra logic required to
satisfy this priority relationship.

Attaching a parallel_case attribute to a case statement header allows the
Quartus II software to consider its case items as inherently parallel; that is, at most
one case item matches the case expression value. Parallel case items reduce the
complexity of the generated logic.

In VHDL, the individual choices in a case statement might not overlap, so they are
always parallel and this attribute does not apply.

Altera recommends that you only use this attribute when the case statement is truly
parallel. If you use the attribute in any other situation, the generated logic does not
match the functional simulation behavior of the Verilog HDL.

1 Altera recommends that you avoid using the parallel_case attribute, due to the
possibility of introducing mismatches between the Verilog HDL functional and the
post-Quartus II simulation.

If you specify SystemVerilog-2005 as the supported Verilog HDL version for your
design, you can use the SystemVerilog keyword unique to achieve the same result as
the parallel_case directive without causing simulation mismatches.

Example 9–83. Verilog HDL Code: a full_case Attribute

module full_case (a, sel, y);
input [3:0] a;
input [1:0] sel;
output y;
reg y;
always @ (a or sel)
case (sel) // synthesis full_case

2'b00: y=a[0];
2'b01: y=a[1];
2'b10: y=a[2];

endcase
endmodule

Example 9–84. Verilog-2001 Syntax for the full_case Attribute

(* full_case *) case (sel)

Chapter 9: Quartus II Integrated Synthesis 9–61
Quartus II Synthesis Options

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Example 9–85 shows a casez statement with overlapping case items. In functional
HDL simulation, the three case items have a priority order that depends on the bits in
sel. For example, sel[2] takes priority over sel[1], which takes priority over
sel[0]. However, the synthesized design can simulate differently because the
parallel_case attribute eliminates this priority order. If more than one bit of sel is
high, more than one output (a, b, or c) is high as well, a situation that cannot occur in
functional HDL simulation.

Verilog-2001 syntax also accepts the statements shown in Example 9–86 in the case
(or casez) header instead of the comment form, as shown in Example 9–85.

Translate Off and On / Synthesis Off and On
The translate_off and translate_on synthesis directives indicate whether the
Quartus II software or a third-party synthesis tool should compile a portion of HDL
code that is not relevant for synthesis. The translate_off directive marks the
beginning of code that the synthesis tool should ignore; the translate_on directive
indicates that synthesis should resume. You can also use the synthesis_on and
synthesis_off directives as a synonym for translate on and off.

A common use of these directives is to indicate a portion of code that is intended for
simulation only. The synthesis tool reads synthesis-specific directives and processes
them during synthesis; however, third-party simulation tools read the directives as
comments and ignore them. Example 9–87, Example 9–88, and Example 9–89 show
these directives.

Example 9–85. Verilog HDL Code: a parallel_case Attribute

module parallel_case (sel, a, b, c);
input [2:0] sel;
output a, b, c;
reg a, b, c;
always @ (sel)
begin

{a, b, c} = 3'b0;
casez (sel) // synthesis parallel_case

3'b1??: a = 1'b1;
3'b?1?: b = 1'b1;
3'b??1: c = 1'b1;

endcase
end

endmodule

Example 9–86. Verilog-2001 Syntax

(* parallel_case *) casez (sel)

Example 9–87. Verilog HDL Code: Translate Off and On

// synthesis translate_off
parameter tpd = 2; // Delay for simulation
#tpd;
// synthesis translate_on

9–62 Chapter 9: Quartus II Integrated Synthesis
Quartus II Synthesis Options

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

If you wish to ignore a portion of code in Quartus II integrated synthesis only, you can
use the Altera-specific attribute keyword altera. For example, use the // altera
translate_off and // altera translate_on directives to direct Quartus II
integrated synthesis to ignore a portion of code that is intended only for other
synthesis tools.

Ignore translate_off and synthesis_off Directives
The Ignore translate_off and synthesis_off directives logic option directs Quartus II
integrated synthesis to ignore the translate_off and synthesis_off directives
described in the previous section. This allows you to compile code that was
previously intended to be ignored by third-party synthesis tools; for example,
megafunction declarations that were treated as black boxes in other tools but can be
compiled in the Quartus II software. To set the Ignore translate_off and synthesis_off
directives logic option, click More Settings on the Analysis & Synthesis Settings
page of the Settings dialog box.

Read Comments as HDL
The read_comments_as_HDL synthesis directive indicates that the Quartus II
software should compile a portion of HDL code that is commented out. This directive
allows you to comment out portions of HDL source code that are not relevant for
simulation, while instructing the Quartus II software to read and synthesize that same
source code. Setting the read_comments_as_HDL directive to on marks the
beginning of commented code that the synthesis tool should read; setting the
read_comments_as_HDL directive to off indicates the end of the code.

1 You can use this directive with translate_off and translate_on to create one
HDL source file that includes both a megafunction instantiation for synthesis and a
behavioral description for simulation.

Because formal verification tools do not recognize the read_comments_as_HDL
directive, it is not supported when you are using formal verification.

In Example 9–90, Example 9–91, and Example 9–92, the commented code enclosed by
read_comments_as_HDL is visible to the Quartus II Compiler and is synthesized.
VHDL 2008 allows block comments which is also supported for synthesis directives.

1 Because synthesis directives are case-sensitive in Verilog HDL, you must match the
case of the directive, as shown in the following examples.

Example 9–88. VHDL Code: Translate Off and On

-- synthesis translate_off
use std.textio.all;
-- synthesis translate_on

Example 9–89. VHDL 2008 Code: Translate Off and On

/* synthesis translate_off */
use std.textio.all;
/* synthesis translate_on */

Chapter 9: Quartus II Integrated Synthesis 9–63
Quartus II Synthesis Options

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Use I/O Flipflops
This attribute directs the Quartus II software to implement input, output, and output
enable flipflops (or registers) in I/O cells that have fast, direct connections to an I/O
pin, when possible. Applying the useioff synthesis attribute can improve I/O
performance by minimizing setup, clock-to-output, and clock-to-output enable times.
This synthesis attribute is supported using the Fast Input Register, Fast Output
Register, and Fast Output Enable Register logic options that can also be set in the
Assignment Editor.

f For more information about which device families support fast input, output, and
output enable registers, refer to the device family data sheet, device handbook, or the
Quartus II Help.

The useioff synthesis attribute takes a Boolean value and can only be applied to the
port declarations of a top-level Verilog HDL module or VHDL entity (it is ignored if
applied elsewhere). Setting the value to 1 (Verilog HDL) or TRUE (VHDL) instructs
the Quartus II software to pack registers into I/O cells. Setting the value to 0 (Verilog
HDL) or FALSE (VHDL) prevents register packing into I/O cells.

In Example 9–93 and Example 9–94, the useioff synthesis attribute directs the
Quartus II software to implement the registers a_reg, b_reg, and o_reg in the I/O
cells corresponding to the ports a, b, and o, respectively.

Example 9–90. Verilog HDL Code: Read Comments as HDL

// synthesis read_comments_as_HDL on
// my_rom lpm_rom (.address (address),
// .data (data));
// synthesis read_comments_as_HDL off

Example 9–91. VHDL Code: Read Comments as HDL

-- synthesis read_comments_as_HDL on
-- my_rom : entity lpm_rom
-- port map (
-- address => address,
-- data => data,);
-- synthesis read_comments_as_HDL off

Example 9–92. VHDL 2008 Code: Read Block Comments as HDL

/* synthesis read_comments_as_HDL on */
/* my_rom : entity lpm_rom
 port map (
 address => address,
 data => data,); */
 synthesis read_comments_as_HDL off */

9–64 Chapter 9: Quartus II Integrated Synthesis
Quartus II Synthesis Options

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

Verilog-2001 syntax also accepts the type of statements shown in Example 9–94 and
Example 9–95 instead of the comment form shown in Example 9–93.

Example 9–93. Verilog HDL Code: the useioff Attribute

module top_level(clk, a, b, o);
 input clk;
input [1:0] a, b /* synthesis useioff = 1 */;
output [2:0] o /* synthesis useioff = 1 */;
reg [1:0] a_reg, b_reg;
reg [2:0] o_reg;
always @ (posedge clk)
begin

a_reg <= a;
b_reg <= b;
o_reg <= a_reg + b_reg;

end
assign o = o_reg;

endmodule

Example 9–94. Verilog-2001 Code: the useioff Attribute

(* useioff = 1 *) input [1:0] a, b;
(* useioff = 1 *) output [2:0] o;

Example 9–95. VHDL Code: the useioff Attribute

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity useioff_example is

port (
clk : in std_logic;
a, b : in unsigned(1 downto 0);
o : out unsigned(1 downto 0));

attribute useioff : boolean;
attribute useioff of a : signal is true;
attribute useioff of b : signal is true;
attribute useioff of o : signal is true;

end useioff_example;
architecture rtl of useioff_example is

signal o_reg, a_reg, b_reg : unsigned(1 downto 0);
begin

process(clk)
begin

if (clk = '1' AND clk'event) then
a_reg <= a;
b_reg <= b;
o_reg <= a_reg + b_reg;

end if;
end process;

o <= o_reg;
end rtl;

Chapter 9: Quartus II Integrated Synthesis 9–65
Quartus II Synthesis Options

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Specifying Pin Locations with chip_pin
This attribute enables you to assign pin locations in your HDL source. The attribute
can be used only on the ports of the top-level entity or module in the design, and
cannot be used to assign pin locations from entities at lower levels of the design
hierarchy. You can assign pins only to single-bit or one-dimensional bus ports in your
design.

For single-bit ports, the value of the chip_pin attribute is the name of the pin on the
target device, as specified by the device’s pin table.

1 In addition to the chip_pin attribute, the Quartus II software supports the
altera_chip_pin_lc attribute name for compatibility with other synthesis tools.
When using this attribute in other synthesis tools, some older device families require
an “@” symbol in front of each pin assignment. In the Quartus II software, the “@” is
optional.

Example 9–96 through Example 9–98 show different ways of assigning input pin
my_pin1 to Pin C1 and my_pin2 to Pin 4 on a different target device.

For bus I/O ports, the value of the chip pin attribute is a comma-delimited list of pin
assignments. The order in which you declare the port’s range determines the mapping
of assignments to individual bits in the port. To leave a particular bit unassigned,
simply leave its corresponding pin assignment blank.

Example 9–99 assigns my_pin[2] to Pin_4, my_pin[1] to Pin_5, and my_pin[0]
to Pin_6.

Example 9–100 reverses the order of the signals in the bus, assigning my_pin[0] to
Pin_4 and my_pin[2] to Pin_6 but leaves my_pin[1] unassigned.

Example 9–96. Verilog-1995 Code: Applying Chip Pin to a Single Pin

input my_pin1 /* synthesis chip_pin = "C1" */;
input my_pin2 /* synthesis altera_chip_pin_lc = "@4" */;

Example 9–97. Verilog-2001 Code: Applying Chip Pin to a Single Pin

(* chip_pin = "C1" *) input my_pin1;
(* altera_chip_pin_lc = "@4" *) input my_pin2;

Example 9–98. VHDL Code: Applying Chip Pin to a Single Pin

entity my_entity is
port(my_pin1: in std_logic; my_pin2: in std_logic;…);
end my_entity;
attribute chip_pin : string;
attribute altera_chip_pin_lc : string;
attribute chip_pin of my_pin1 : signal is "C1";
attribute altera_chip_pin_lc of my_pin2 : signal is "@4";

Example 9–99. Verilog-1995 Code: Applying Chip Pin to a Bus of Pins

input [2:0] my_pin /* synthesis chip_pin = "4, 5, 6" */;

9–66 Chapter 9: Quartus II Integrated Synthesis
Quartus II Synthesis Options

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

Example 9–101 assigns my_pin[2] to Pin 4 and my_pin[0] to Pin 6, but leaves
my_pin[1] unassigned.

Using altera_attribute to Set Quartus II Logic Options
This attribute enables you to apply Quartus II options and assignments to an object in
your HDL source code. You can set this attribute on an entity, architecture, instance,
register, RAM block, or I/O pin. You cannot set it on an arbitrary combinational node
such as a net. With altera_attribute, you can control synthesis options from your
HDL source even when the options lack a specific HDL synthesis attribute (such as
many of the logic options presented earlier in this chapter). You can also use this
attribute to pass entity-level settings and assignments to phases of the compiler flow
beyond Analysis and Synthesis, such as Fitting.

Assignments or settings made through the Quartus II GUI, the .qsf, or the Tcl
interface take precedence over assignments or settings made with the
altera_attribute synthesis attribute in your HDL code.

The syntax for setting this attribute in HDL is the same as the syntax for other
synthesis attributes, as shown in “Synthesis Attributes” on page 9–24.

The attribute value is a single string containing a list of .qsf variable assignments
separated by semicolons, as shown in Example 9–102.

If the Quartus II option or assignment includes a target, source, and/or section tag,
use the syntax in Example 9–103 for each .qsf variable assignment.

The syntax for the full attribute value, including the optional target, source, and
section tags for two different .qsf assignments, is shown in Example 9–104.

Example 9–100. Verilog-1995 Code: Applying Chip Pin to Part of a Bus

input [0:2] my_pin /* synthesis chip_pin = "4, ,6" */;

Example 9–101. VHDL Code: Applying Chip Pin to Part of a Bus of Pins

entity my_entity is
port(my_pin: in std_logic_vector(2 downto 0);…);
end my_entity;

attribute chip_pin of my_pin: signal is "4, , 6";

Example 9–102. Variable Assignments Separated by Semicolons

-name <variable_1> <value_1>;-name <variable_2> <value_2>[;…]

Example 9–103. Syntax for Each .qsf Variable Assignment

-name <variable> <value>
-from <source> -to <target> -section_id <section>

Example 9–104. Syntax for Fill Attribute Value

" -name <variable_1> <value_1> [-from <source_1>] [-to <target_1>] [-section_id \
<section_1>]; -name <variable_2> <value_2> [-from <source_2>] [-to <target_2>] \
[-section_id <section_2>] "

Chapter 9: Quartus II Integrated Synthesis 9–67
Quartus II Synthesis Options

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

If the assigned value of a variable is a string of text, you must use escaped quotes
around the value in Verilog HDL, or double-quotes in VHDL, as shown in the
following examples (using non-existent variable and value terms):

Verilog HDL
"VARIABLE_NAME \"STRING_VALUE\""

VHDL
"VARIABLE_NAME ""STRING_VALUE"""

To find the .qsf variable name or value corresponding to a specific Quartus II option
or assignment, you can make the option setting or assignment in the Quartus II GUI
and then note the changes in the .qsf. You can also refer to the Quartus II Settings File
Reference Manual, which documents all variable names.

Example 9–105 through Example 9–107 use altera_attribute to set the power-up
level of an inferred register.

1 For inferred instances, you cannot apply the attribute to the instance directly.
Therefore, you must apply the attribute to one of the instance’s output nets. The
Quartus II software moves the attribute to the inferred instance automatically.

Example 9–108 through Example 9–110 use the altera_attribute to disable the
Auto Shift Register Replacement synthesis option for an entity. To apply the Altera
Attribute to a VHDL entity, you must set the attribute on its architecture rather than
on the entity itself.

Example 9–105. Verilog-1995 Code: Applying altera_attribute to an Instance

reg my_reg /* synthesis altera_attribute = "-name POWER_UP_LEVEL HIGH"
*/;

Example 9–106. Verilog-2001 Code: Applying altera_attribute to an Instance

(* altera_attribute = "-name POWER_UP_LEVEL HIGH" *) reg my_reg;

Example 9–107. VHDL Code: Applying altera_attribute to an Instance

signal my_reg : std_logic;
attribute altera_attribute : string;
attribute altera_attribute of my_reg: signal is "-name POWER_UP_LEVEL
HIGH";

Example 9–108. Verilog-1995 Code: Applying altera_attribute to an Entity

module my_entity(…) /* synthesis altera_attribute = "-name
AUTO_SHIFT_REGISTER_RECOGNITION OFF" */;

Example 9–109. Verilog-2001 Code: Applying altera_attribute to an Entity

(* altera_attribute = "-name AUTO_SHIFT_REGISTER_RECOGNITION OFF" *)
module my_entity(…) ;

http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf

9–68 Chapter 9: Quartus II Integrated Synthesis
Analyzing Synthesis Results

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

You can also use altera_attribute for more complex assignments involving more
than one instance. In Example 9–111 through Example 9–113, the
altera_attribute is used to cut all timing paths from reg1 to reg2, equivalent to
this Tcl or QSF command:

set_instance_assignment -name CUT ON -from reg1 -to reg2 r

You can specify either the -to option or the -from option in a single
altera_attribute; integrated synthesis automatically sets the remaining option to
the target of the altera_attribute. You can also specify wildcards for either
option. For example, if you specify “*” for the -to option instead of reg2 in these
examples, the Quartus II software cuts all timing paths from reg1 to every other
register in this design entity.

The altera_attribute can be used only for entity-level settings, and the
assignments (including wildcards) apply only to the current entity.

Analyzing Synthesis Results
After you have performed synthesis, you can check your synthesis results in the
Analysis & Synthesis section of the Compilation Report and the Project Navigator.

Example 9–110. VHDL Code: Applying altera_attribute to an Entity

entity my_entity is
-- Declare generics and ports
end my_entity;
architecture rtl of my_entity is
attribute altera_attribute : string;
-- Attribute set on architecture, not entity
attribute altera_attribute of rtl: architecture is "-name
AUTO_SHIFT_REGISTER_RECOGNITION OFF";
begin
-- The architecture body
end rtl;

Example 9–111. Verilog-1995 Code: Applying altera_attribute with the -to Option

reg reg2;
reg reg1 /* synthesis altera_attribute = "-name CUT ON -to reg2" */;

Example 9–112. Verilog-2001 and SystemVerilog Code: Applying altera_attribute with the -to Option

reg reg2;
(* altera_attribute = "-name CUT ON -to reg2" *) reg reg1;

Example 9–113. VHDL Code: Applying altera_attribute with the -to Option

signal reg1, reg2 : std_logic;
attribute altera_attribute: string;
attribute altera_attribute of reg1 : signal is "-name CUT ON -to reg2";

Chapter 9: Quartus II Integrated Synthesis 9–69
Analyzing and Controlling Synthesis Messages

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Analysis and Synthesis Section of the Compilation Report
The Compilation Report, which provides a summary of results for the project, appears
after a successful compilation, or you can choose it from the Processing menu. After
Analysis and Synthesis, before the Fitter begins, the Summary information provides a
summary of utilization based on synthesis data, before Fitter optimizations have
occurred. Synthesis-specific information is listed in the Analysis & Synthesis section.

There are various report sections under Analysis and Synthesis, including a list of the
source files read for the project, the resource utilization by entity after synthesis, and
information about state machines, latches, optimization results, and parameter
settings.

f For more information about each report section, refer to the Quartus II Help.

Project Navigator
The Hierarchy tab of the Project Navigator provides a summary of resource
information about the entities in the project. After Analysis and Synthesis, before the
Fitter begins, the Project Navigator provides a summary of utilization based on
synthesis data, before Fitter optimizations have occurred.

If you hold your mouse pointer over one of the entities in the Hierarchy tab, a tooltip
appears that shows parameter information for each instance.

Analyzing and Controlling Synthesis Messages
This section provides information about the messages generated during synthesis,
and how you can control which messages appear during compilation.

Quartus II Messages
The messages that appear during Analysis and Synthesis describe many of the
optimizations that the software performs during the synthesis stage, and provide
information about how the design is interpreted. You should always check the
messages to analyze Critical Warnings and Warnings, because these messages can
relate to important design problems. It is also useful to read the information messages
Info and Extra Info to get more information about how the software processes your
design.

The Info, Extra Info, Warning, Critical Warning, and Error tabs display messages
grouped by type.

You can right-click on a message in the Messages window and get help on the
message, locate the source of the message in your design, and manage messages.

You can use message suppression to reduce the number of messages listed after a
compilation by preventing individual messages and entire categories of messages
from being displayed. For example, if you review a particular message and determine
that it is not caused by something in your design that should be changed or fixed, you
can suppress the message so it is not displayed during subsequent compilations. This
saves time because you see only new messages during subsequent compilations.

9–70 Chapter 9: Quartus II Integrated Synthesis
Analyzing and Controlling Synthesis Messages

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

You can right-click on an individual message in the Messages window and choose
commands in the Suppress submenu. Another way to achieve the same goal is to
open the Message Suppression Manager. To do this, right-click in the Messages
window, point to Suppress, and click Message Suppression Manager.

f For more information about messages and how to suppress them, refer to the
Managing Quartus II Projects chapter in volume 2 of the Quartus II Handbook.

In the Quartus II software version 8.1 and later, you can specify the type of Analysis
and Synthesis messages that you want to view by selecting the Analysis & Synthesis
Message Level option. You can specify the display level by performing the following
steps:

1. On the Assignments menu, click Settings. The Settings dialog box appears.

2. In the Category list, click Analysis & Synthesis Settings. The Analysis &
Synthesis Settings page appears.

3. Click More Settings. Select the level for the Analysis & Synthesis Message Level
option.

f For more information about the Analysis & Synthesis Message Level option, refer to
the Quartus II Help File.

VHDL and Verilog HDL Messages
The Quartus II software issues a variety of messages when it is analyzing and
elaborating the Verilog HDL and VHDL files in your design. These HDL messages are
a subset of all Quartus II messages that help you identify potential problems early in
the design process.

HDL messages fall into the following three categories:

■ Info message—Lists a property of your design.

■ Warning message—Indicates a potential problem in your design. Potential
problems come from a variety of sources, including typos, inappropriate design
practices, or the functional limitations of your target device. Though HDL warning
messages do not always identify actual problems, you should always investigate
code that generates an HDL warning. Otherwise, the synthesized behavior of your
design might not match your original intent or its simulated behavior.

■ Error message—Indicates an actual problem with your design. Your HDL code
can be invalid due to a syntax or semantic error, or it might not be synthesizable as
written. Consult the Help associated with any HDL error messages for assistance
in removing the error from your design.

In Example 9–114, the sensitivity list contains multiple copies of the variable i. While
the Verilog HDL language does not prohibit duplicate entries in a sensitivity list, it is
clear that this design has a typing error: Variable j should be listed on the sensitivity
list to avoid a possible simulation or synthesis mismatch.

http://www.altera.com/literature/hb/qts/qts_qii52012.pdf

Chapter 9: Quartus II Integrated Synthesis 9–71
Analyzing and Controlling Synthesis Messages

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

When processing the HDL code, the Quartus II software generates the following
warning message:

Warning: (10276) Verilog HDL sensitivity list warning at dup.v(2):
sensitivity list contains multiple entries for "i".

In Verilog HDL, variable names are case-sensitive, so the variables my_reg and
MY_REG in Example 9–115 are two different variables. However, declaring variables
which have names in different cases is potentially confusing, especially if you use
VHDL, in which variables are not case-sensitive.

When processing the HDL code, the Quartus II software generates the following
informational message:

Info: (10281) Verilog HDL information at namecase.v(3): variable name
"MY_REG" and variable name "my_reg" should not differ only in case.

In addition, the Quartus II software generates additional HDL info messages to
inform you that neither my_reg or MY_REG are used in this small design:

Info: (10035) Verilog HDL or VHDL information at namecase.v(3): object
"my_reg" declared but not used
Info: (10035) Verilog HDL or VHDL information at namecase.v(4): object
"MY_REG" declared but not used

The Quartus II software allows you to control how many HDL messages you see
during the analysis and elaboration of your design files. You can set the HDL Message
Level to enable or disable groups of HDL messages, or you can enable or disable
specific messages, as described in the following sections.

For more information about synthesis directives and their syntax, refer to “Synthesis
Directives” on page 9–26.

Setting the HDL Message Level
The HDL Message Level specifies the types of messages that the Quartus II software
displays when it is analyzing and elaborating your design files. Table 9–8 describes
the HDL message levels.

Example 9–114. Generating an HDL Warning Message

//dup.v
module dup(input i, input j, output reg o);
always @ (i or i)

o = i & j;
endmodule

Example 9–115. Generating HDL Info Messages

// namecase.v
module namecase (input i, output o);

reg my_reg;
reg MY_REG;
assign o = i;

endmodule

9–72 Chapter 9: Quartus II Integrated Synthesis
Analyzing and Controlling Synthesis Messages

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

You must address all issues reported at the Level1 setting. The default HDL message
level is Level2.

To set the HDL Message Level in the GUI, perform the following steps:

1. On the Assignments menu, click Settings.

2. In the Category list, click Analysis & Synthesis Settings.

3. Set the desired message level from the pull-down menu in the HDL Message
Level list, and click OK.

You can override this default setting in a source file with the message_level
synthesis directive, which takes the values level1, level2, and level3, as
shown in Example 9–116 and Example 9–117.

A message_level synthesis directive remains effective until the end of a file or until
the next message_level directive. In VHDL, you can use the message_level
synthesis directive to set the HDL Message Level for entities and architectures, but not
for other design units. An HDL Message Level for an entity applies to its
architectures, unless overridden by another message_level directive. In Verilog
HDL, you can use the message_level directive to set the HDL Message Level for a
module.

Table 9–8. HDL Info Message Level

Level Purpose Description

Level1 Displays high-severity
messages only

If you only want to see the HDL messages that identify likely problems with your
design, select Level1. When Level1 is selected, the Quartus II software issues a
message only if there is a high probability that it points to an actual problem with
your design.

Level2 Displays high-severity and
medium-severity messages

If you want to see additional HDL messages that identify possible problems with
your design, select Level2. This is the default setting.

Level3 Displays all messages,
including low-severity
messages

If you want to see all HDL info and warning messages, select Level3. This level
includes extra “LINT” messages that suggest changes to improve the style of your
HDL code or make it easier to understand.

Example 9–116. Verilog HDL Examples of message_level Directive

// altera message_level level1
or
/* altera message_level level3 */

Example 9–117. VHDL Code: message_level Directive

-- altera message_level level2

Chapter 9: Quartus II Integrated Synthesis 9–73
Node-Naming Conventions in Quartus II Integrated Synthesis

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Enabling or Disabling Specific HDL Messages by Module/Entity
You can enable or disable a specific HDL info or warning message with its Message
ID, which is displayed in parentheses at the beginning of the message. Enabling or
disabling a specific message overrides its HDL Message Level. This method is
different from the message suppression in the Messages window because you can use
this method to disable messages for a specific module or entity. This method applies
only to the HDL messages, and if you disable a message with this method, the
message is listed as a Suppressed message in the Quartus II GUI.

To disable specific HDL messages in the GUI, perform the following steps:

1. On the Assignments menu, click Settings.

2. In the Category list, expand Analysis & Synthesis Settings and select Advanced.

3. In the Advanced Message Settings dialog box, add the Message IDs you want to
enable or disable.

To enable or disable specific HDL messages in your HDL, use the message_on and
message_off synthesis directives. Both directives take a space-separated list of
Message IDs. You can enable or disable messages with these synthesis directives
immediately before Verilog HDL modules, VHDL entities, or VHDL architectures.
You cannot enable or disable a message in the middle of an HDL construct.

A message enabled or disabled via a message_on or message_off synthesis
directive overrides its HDL Message Level or any message_level synthesis
directive. The message remains disabled until the end of the source file or until its
status is changed by another message_on or message_off directive.

Node-Naming Conventions in Quartus II Integrated Synthesis
This section provides an overview of the conventions used by the Quartus II software
during synthesis to name the nodes created from your HDL design. This information
is useful for finding logic node names during verification and debugging of a design.
This section focuses on the conventions for Verilog HDL and VHDL code, but AHDL
and BDFs are discussed when appropriate.

Whenever possible, Quartus II integrated synthesis uses wire or signal names from
your source code to name nodes such as LEs or ALMs. Some nodes, such as registers,
have predictable names that typically do not change when a design is resynthesized,
although certain optimizations can affect register names. The names of other nodes,
particularly LEs or ALMs that contain only combinational logic, can change due to
logic optimizations that the software performs.

This section discusses the following topics:

Example 9–118. Verilog HDL message_off Directive for Message with ID 10000

// altera message_off 10000
or
/* altera message_off 10000 */

Example 9–119. VHDL message_off Directive for Message with ID 10000

-- altera message_off 10000

9–74 Chapter 9: Quartus II Integrated Synthesis
Node-Naming Conventions in Quartus II Integrated Synthesis

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

■ “Hierarchical Node-Naming Conventions”

■ “Node-Naming Conventions for Registers (DFF or D Flipflop Atoms)”

■ “Register Changes During Synthesis” on page 9–75

■ “Preserving Register Names” on page 9–77

■ “Node-Naming Conventions for Combinational Logic Cells” on page 9–78

■ “Preserving Combinational Logic Names” on page 9–79

Hierarchical Node-Naming Conventions
To make each name in the design unique, the Quartus II software adds the hierarchy
path to the beginning of each name. The “|” separator is used to indicate a level of
hierarchy. For each instance in the hierarchy, the software adds the entity name and
the instance name of that entity, using the “:” separator between each entity name and
its instance name. For example, if a design defines entity A with the name
my_A_inst, the hierarchy path of that entity would be A:my_A_inst. The full name
of any node is obtained by starting with the hierarchical instance path, followed by a
“|”, and ending with the node name inside that entity, using the following
convention:

<entity 0>:<instance_name 0>|<entity 1>:<instance_name 1>|...|<instance_name n>|
<node_name>

For example, if entity A contains a register (DFF atom) called my_dff, its full
hierarchy name would be A:my_A_inst|my_dff.

To instruct the Compiler to generate node names that do not contain entity names, on
the Compilation Process Settings page of the Settings dialog box, click More
Settings, and the turn off Display entity name for node name. With this option off,
the node names use the following convention:

<instance_name 0>|<instance_name 1>|...|<instance_name n> |<node_name>

Node-Naming Conventions for Registers (DFF or D Flipflop Atoms)
In Verilog HDL and VHDL, inferred registers are named after the reg or signal
connected to the output.

Example 9–120 is a description of a register in Verilog HDL that creates a DFF
primitive called my_dff_out:

Similarly, Example 9–121 is a description of a register in VHDL that creates a DFF
primitive called my_dff_out.

Example 9–120. Verilog HDL Register

wire dff_in, my_dff_out, clk;

always @ (posedge clk)
my_dff_out <= dff_in;

Chapter 9: Quartus II Integrated Synthesis 9–75
Node-Naming Conventions in Quartus II Integrated Synthesis

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

In AHDL designs, DFF registers are declared explicitly rather than inferred, so the
software uses the user-declared name for the register.

For schematic designs using a .bdf, all elements are given a name when they are
instantiated in the design, so the software uses the user-defined name for the register
or DFF.

In the special case that a wire or signal (such as my_dff_out in the preceding
examples) is also an output pin of your top-level design, the Quartus II software
cannot use that name for the register (for example, cannot use my_dff_out) because
the software requires that all logic and I/O cells have unique names. In this case,
Quartus II integrated synthesis appends ~reg0 to the register name.

For example, the Verilog HDL code in Example 9–122 produces a register called
q~reg0:

This situation occurs only for registers driving top-level pins. If a register drives a port
of a lower level of the hierarchy, the port is removed during hierarchy flattening and
the register retains its original name, in this case, q.

Register Changes During Synthesis
On some occasions, you might not be able to find registers that you expect to see in
the synthesis netlist. Registers might be removed by logic optimization, or their
names might be changed due to synthesis optimization. Common optimizations
include inference of a state machine, counter, adder-subtractor, or shift register from
registers and surrounding logic. Other common register changes occur when registers
are packed into dedicated hardware on the FPGA, such as a DSP block or a RAM
block.

This section describes the following factors that can affect register names:

■ “Synthesis and Fitting Optimizations”

■ “State Machines”

■ “Inferred Adder-Subtractors, Shift Registers, Memory, and DSP Functions” on
page 9–77

■ “Packed Input and Output Registers of RAM and DSP Blocks” on page 9–77

Example 9–121. VHDL Register

signal dff_in, my_dff_out, clk;
process (clk)
begin
if (rising_edge(clk)) then
my_dff_out <= dff_in;
end if;
end process;

Example 9–122. Verilog HDL Register Feeding Output Pin

module my_dff (input clk, input d, output q);
always @ (posedge clk)
q <= d;
endmodule

9–76 Chapter 9: Quartus II Integrated Synthesis
Node-Naming Conventions in Quartus II Integrated Synthesis

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

■ “Preserving Register Names” on page 9–77

■ “Preserving Combinational Logic Names” on page 9–79

Synthesis and Fitting Optimizations
Registers might be removed by logic optimization during synthesis if they are not
connected to inputs or outputs in the design, or if the logic can be simplified due to
constant signal values. Register names might also be changed due to synthesis
optimizations, such as when duplicate registers are merged together to reduce
resource utilization.

NOT-gate push back optimizations can affect registers that use preset signals. This
type of optimization can impact your timing assignments when registers are used as
clock dividers. If this situation occurs in your design, change the clock settings to
work on the new register name.

Synthesis netlist optimizations often change node names because registers can be
combined or duplicated to optimize the design.

f For more information about the type of optimizations performed by synthesis netlist
optimizations, refer to the Netlist Optimizations and Physical Synthesis chapter in
volume 2 of the Quartus II Handbook.

The Quartus II Compilation Report provides a list of registers that are removed
during synthesis optimizations, and a brief reason for the removal. To generate the
Quartus II Compilation Report, you must perform the following steps:

1. In the Analysis & Synthesis folder, open Optimization Results.

2. Open Register Statistics, and click on the Registers Removed During Synthesis
report.

3. Click on Removed Registers Triggering Further Register Optimizations report.

The second report contains a list of registers that are the cause of other registers being
removed in the design. It provides a brief reason for the removal, and a list of registers
that were removed due to the removal of the initial register.

Synthesis creates synonyms for registers duplicated with the Maximum Fan-Out
option (or maxfan attribute). Therefore, timing assignments applied to nodes that are
duplicated with this option are applied to the new nodes as well.

The Quartus II Fitter can also change node names after synthesis (for example, when
the Fitter uses register packing to pack a register into an I/O element, or when logic is
modified by physical synthesis). The Fitter creates synonyms for duplicated registers
so timing analysis can use the existing node name when applying assignments.

You can instruct the Quartus II software to preserve certain nodes throughout
compilation so you can use them for verification or making assignments. For more
information, refer to “Preserving Register Names” on page 9–77.

http://www.altera.com/literature/hb/qts/qts_qii52007.pdf

Chapter 9: Quartus II Integrated Synthesis 9–77
Node-Naming Conventions in Quartus II Integrated Synthesis

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

State Machines
If a state machine is inferred from your HDL code, the registers that represent the
states are mapped into a new set of registers that implement the state machine. Most
commonly, the software converts the state machine into a one-hot form where each
state is represented by one register. In this case, for Verilog HDL or VHDL designs, the
registers are named according to the name of the state register and the states, where
possible.

For example, consider a Verilog HDL state machine where the states are parameter
state0 = 1, state1 = 2, state2 = 3, and where the state machine register is
declared as reg [1:0] my_fsm. In this example, the three one-hot state registers are
named my_fsm.state0, my_fsm.state1, and my_fsm.state2.

In AHDL, state machines are explicitly specified with a machine name. State machine
registers are given synthesized names based on the state machine name but not the
state names. For example, if a state machine is called my_fsm and has four state bits,
they might be synthesized with names such as my_fsm~12, my_fsm~13,
my_fsm~14, and my_fsm~15.

Inferred Adder-Subtractors, Shift Registers, Memory, and DSP Functions
The Quartus II software infers megafunctions from Verilog HDL and VHDL code for
logic that forms adder-subtractors, shift registers, RAM, ROM, and arithmetic
functions that are placed in DSP blocks.

f For information about inferring megafunctions, refer to the Recommended HDL Coding
Styles chapter in volume 1 of the Quartus II Handbook.

Because adder-subtractors are part of a megafunction instead of generic logic, the
combinational logic exists in the design with different names. For shift registers,
memory, and DSP functions, the registers and logic are typically implemented inside
the dedicated RAM or DSP blocks in the device. Thus, the registers are not visible as
separate LEs or ALMs.

Packed Input and Output Registers of RAM and DSP Blocks
Registers are packed into the input registers and output registers of RAM and DSP
blocks, so that they are not visible as separate registers in LEs or ALMs.

f For information about packing registers into RAM and DSP megafunctions, refer to
the Recommended HDL Coding Styles chapter in volume 1 of the Quartus II Handbook.

Preserving Register Names
Altera recommends you to preserve certain register names for verification or
debugging, or to ensure that timing assignments are applied correctly. Quartus II
integrated synthesis preserves certain nodes automatically if they are likely to be used
in a timing constraint.

Use the preserve attribute to instruct the compiler not to minimize or remove a
specified register during synthesis optimizations or register netlist optimizations. For
details, refer to “Preserve Registers” on page 9–42.

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

9–78 Chapter 9: Quartus II Integrated Synthesis
Node-Naming Conventions in Quartus II Integrated Synthesis

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

Use the noprune attribute to preserve a fan-out-free register through the entire
compilation flow. For details, refer to “Noprune Synthesis Attribute/Preserve Fan-out
Free Register Node” on page 9–44.

Use the synthesis attribute syn_dont_merge to ensure that the registers are not
merged with other registers, and other registers are not merged with them. For
details, refer to “Disable Register Merging/Don’t Merge Register” on page 9–43.

Node-Naming Conventions for Combinational Logic Cells
Whenever possible for Verilog HDL, VHDL, and AHDL code, the Quartus II software
uses wire names that are the targets of assignments, but can change the node names
due to synthesis optimizations.

For example, consider the Verilog HDL code in Example 9–123. Quartus II integrated
synthesis uses the names c, d, e, and f for the combinational logic cells that are
produced.

For schematic designs using a .bdf, all elements are given a name when they are
instantiated in the design and the software uses the user-defined name when possible.

1 Node naming conventions for schematic buses in the Quartus II software version 7.2
and later are different than the MAX+PLUS II software and older versions of the
Quartus II software. In most cases, the Quartus II software uses the appropriate
naming convention for the design source file. Designs created using the Quartus II
software version 7.1 or earlier use the MAX+PLUS II naming convention. Designs
created in the Quartus II software version 7.2 and later use the Quartus II naming
convention that matches the behavior of standard HDLs. In some cases, however, a
design might contain files created in various versions. To set an assignment for a
particular instance in the Assignment Editor, enter the instance name in the To field,
choose Block Design Naming from the Assignment Name list, and set the value to
MaxPlusII or QuartusII.

If logic cells, such as those created in Example 9–123, are packed with registers in
device architectures such as the Stratix and Cyclone device families, those names
might not appear in the netlist after fitting. In other devices, such as newer families in
the Stratix and Cyclone series device families, the register and combinational nodes
are kept separate throughout the compilation, so these names are more often
maintained through fitting.

Example 9–123. Naming Nodes for Combinational Logic Cells in Verilog HDL

wire c;
reg d, e, f;

assign c = a | b;
always @ (a or b)
d = a & b;
always @ (a or b) begin : my_label
e = a ^ b;
end

always @ (a or b)
f = ~(a | b);

Chapter 9: Quartus II Integrated Synthesis 9–79
Scripting Support

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

When logic optimizations occur during synthesis, it is not always possible to retain
the initial names as described. In some cases, synthesized names are used, which are
the wire names with a tilde (~) and a number appended. For example, if a complex
expression is assigned to wire w and that expression generates several logic cells,
those cells can have names such as w, w~1, w~2, and so on. Sometimes the original
wire name w is removed, and an arbitrary name such as rtl~123 is created. It is a
goal of Quartus II integrated synthesis to retain user names whenever possible. Any
node name ending with ~<number> is a name created during synthesis, which can
change if the design is changed and re-synthesized. Knowing these naming
conventions can help you understand your post-synthesis results and make it easier
to debug your design or make assignments.

The software maintains combinational clock logic by making sure nodes that are
likely to be a clock are not changed during synthesis. The software also maintains or
protects multiplexers in clock trees so that the TimeQuest timing analyzer has
information about which paths are unate, to allow complete and correct analysis of
combinational clocks. Multiplexers often occur in clock trees when the design selects
between different clocks. To help with the analysis of clock trees, the software ensures
that each multiplexer encountered in a clock tree is broken into 2:1 multiplexers, and
each of those 2:1 multiplexers is mapped into one look-up table (independent of the
device family). This optimization might result in a slight increase in area, and for
some designs a decrease in timing performance. You can turn off this multiplexer
protection with the option Clock MUX Protection under More Settings on the
Analysis & Synthesis Settings page of the Settings dialog box. This option applies to
Arria GX devices, the Stratix and Cyclone series of devices, and MAX II devices.

Preserving Combinational Logic Names
You can preserve certain combinational logic node names for verification or
debugging, or to ensure that timing assignments are applied correctly.

Use the keep attribute to keep a wire name or combinational node name through
logic synthesis minimizations and netlist optimizations. For details, refer to “Keep
Combinational Node/Implement as Output of Logic Cell” on page 9–45.

For any internal node in your design clock network, use keep to protect the name so
that you can apply correct clock settings. Also, set the attribute on combinational logic
involved in cut assignments and -through assignments.

1 Setting the keep attribute on combinational logic can increase the area utilization and
increase the delay of the final mapped logic because it requires the insertion of extra
combinational logic. Use the attribute only when necessary.

Scripting Support
You can run procedures and make settings described in this chapter in a Tcl script.
You can also run some procedures at a command prompt. For detailed information
about scripting command options, refer to the Quartus II Command-Line and Tcl API
Help browser. To run the Help browser, type the following command at the command
prompt:

quartus_sh --qhelp r

The Quartus II Scripting Reference Manual includes the same information in PDF form.

http://www.altera.com/literature/manual/TclScriptRefMnl.pdf

9–80 Chapter 9: Quartus II Integrated Synthesis
Scripting Support

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

f For more information about Tcl scripting, refer to the Tcl Scripting chapter in volume 2
of the Quartus II Handbook. Refer to the Quartus II Settings File Reference Manual for
information about all settings and constraints in the Quartus II software. For more
information about command-line scripting, refer to the Command-Line Scripting
chapter in volume 2 of the Quartus II Handbook.

You can specify many of the options described in this section either on an instance, at
the global level, or both.

Use the following Tcl command to make a global assignment:

set_global_assignment -name <QSF Variable Name> <Value> r

Use the following Tcl command to make an instance assignment:

set_instance_assignment -name <QSF Variable Name> <Value>\ -to
<Instance Name> r

Adding an HDL File to a Project and Setting the HDL Version
Use the following Tcl assignments to add an HDL or schematic entry design file to
your project:

set_global_assignment –name VERILOG_FILE <file name>.<v|sv>
set_global_assignment –name SYSTEMVERILOG_FILE <file name>.sv
set_global_assignment –name VHDL_FILE <file name>.<vhd|vhdl>
set_global_assignment -name AHDL_FILE <file name>.tdf
set_global_assignment -name BDF_FILE <file name>.bdf

1 You can use any file extension for design files, as long as you specify the correct
language when adding the design file. For example, you can use .h for Verilog HDL
header files.

To specify the Verilog HDL or VHDL version, use the following option at the end of
the VERILOG_FILE or VHDL_FILE command:

-HDL_VERSION <language version>

The variable <language version> takes one of the following values:

■ VERILOG_1995

■ VERILOG_2001

■ SYSTEMVERILOG_2005

■ VHDL_1987

■ VHDL_1993

■ VHDL_2008

For example, to add a Verilog HDL file called my_file.v that is written in Verilog-1995,
use the following command:

set_global_assignment –name VERILOG_FILE my_file.v –HDL_VERSION \
VERILOG_1995

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf

Chapter 9: Quartus II Integrated Synthesis 9–81
Scripting Support

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Quartus II Synthesis Options
Table 9–9 lists the .qsf variable names and applicable values for the settings discussed
in this chapter. The .qsf variable name is used in the Tcl assignment to make the
setting along with the appropriate value.

1 When you apply a Quartus II Synthesis option globally or to an entity, it affects all
lower-level entities in the hierarchy path, including entities instantiated with Altera
and third-party IP.

Table 9–9. Quartus II Synthesis Options (Part 1 of 3) (Note 1)

Setting Name Quartus II Settings File Variable Values

Add Pass-Through Logic to
Inferred RAMs

ADD_PASS_THROUGH_LOGIC_TO_INFERRED_
RAMS

On/Off

Allow Any RAM Size for
Recognition

ALLOW_ANY_RAM_SIZE_FOR_RECOGNITION On/Off

Allow Any ROM Size for
Recognition

ALLOW_ANY_ROM_SIZE_FOR_RECOGNITION On/Off

Allow Any Shift Register Size for
Recognition

ALLOW_ANY_SHIFT_REGISTER_SIZE_FOR_
RECOGNITION

On/Off

Allow Asynchronous Clear Usage
For Shift Register Replacement

ALLOW_ACLR_FOR_SHIFT_REGISTER_
RECOGNITION

On/Off

Allow Synchronous Control
Signals

ALLOW_SYNCH_CTRL_USAGE On/Off

Analysis & Synthesis Message
Level

SYNTH_MESSAGE_LEVEL Low/Medium/High

Auto Carry Chains AUTO_CARRY_CHAINS On/Off

Auto Clock Enable Replacement AUTO_CLOCK_ENABLE_RECOGNITION On/Off

Auto DSP Block Replacement AUTO_DSP_RECOGNITION On/Off

Auto Gated Clock Conversion SYNTH_GATED_CLOCK_CONVERSION On/Off

Auto Open-Drain Pins AUTO_OPEN_DRAIN_PINS On/Off

Auto RAM Block Balancing AUTO_RAM_BLOCK_BALANCING On/Off

Auto RAM to Logic Cell
Conversion

AUTO_RAM_TO_LCELL_CONVERSION On/Off

Auto RAM Replacement AUTO_RAM_RECOGNITION On/Off

Auto Resource Sharing AUTO_RESOURCE_SHARING On/Off

Auto ROM Replacement AUTO_ROM_RECOGNITION On/Off

Auto Shift-Register Replacement AUTO_SHIFT_REGISTER_RECOGNITION Always/Auto/Off

Block Design Naming BLOCK_DESIGN_NAMING Auto/Max+Plus II/
Quartus II

Carry Chain Length <device name>_CARRY_CHAIN_LENGTH <Maximum allowable
length of a chain>

Clock MUX Protection SYNTH_CLOCK_MUX_PROTECTION On/Off

Create Debugging Nodes for IP
Cores

ENABLE_IP_DEBUG On/Off

9–82 Chapter 9: Quartus II Integrated Synthesis
Scripting Support

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

DSP Block Balancing DSP_BLOCK_BALANCING Auto/DSP Blocks/ Logic
Elements/ Off/Simple

18-bit Multipliers/
Simple Multipliers/Width

18-bit Multipliers

Extract Verilog State Machines EXTRACT_VERILOG_STATE_MACHINES On/Off

Extract VHDL State Machines EXTRACT_VHDL_STATE_MACHINES On/Off

Force Use of Synchronous Clear
Signals

FORCE_SYNCH_CLEAR On/Off

HDL Message Level HDL_MESSAGE_LEVEL Level1/Level2/ Level3

Ignore CARRY Buffers IGNORE_CARRY_BUFFERS On/Off

Ignore CASCADE Buffers IGNORE_CASCADE_BUFFERS On/Off

Ignore GLOBAL Buffers IGNORE_GLOBAL_BUFFERS On/Off

Ignore LCELL Buffers IGNORE_LCELL_BUFFERS On/Off

Ignore Maximum Fan-Out
Assignments

IGNORE_MAX_FANOUT_ASSIGNMENTS On/Off

Ignore ROW GLOBAL Buffers IGNORE_ROW_GLOBAL_BUFFERS On/Off

Ignore SOFT Buffers IGNORE_SOFT_BUFFERS On/Off

Ignore translate_off and
synthesis_off directives

IGNORE_TRANSLATE_OFF_AND_SYNTHESIS_OFF On/Off

Ignore Verilog Initial Constructs IGNORE_VERILOG_INITIAL_CONSTRUCTS On/Off

Iteration limit for constant Verilog
loops

VERILOG_CONSTANT_LOOP_LIMIT <Maximum limit to
infinite loops before

exhaustion of memory>

Iteration limit for non-constant
Verilog loops

VERILOG_NON_CONSTANT_LOOP_LIMIT <Maximum limit to
infinite loops before

exhaustion of memory>

Limit AHDL Integers to 32 Bits LIMIT_AHDL_INTEGERS_TO_32_BITS On/Off

Maximum DSP Block Usage (2) MAX_BALANCING_DSP_BLOCKS <Maximum DSP Block
Usage Value>

Maximum Number of M4K/
M9K Memory Blocks

MAX_RAM_BLOCKS_M4K <Maximum memory
blocks usage>

Maximum Number of M512
Memory Blocks

MAX_RAM_BLOCKS_M512 <Maximum memory
blocks usage>

Maximum Number of M-RAM/
M144K Memory Blocks

MAX_RAM_BLOCKS_MRAM <Maximum memory
blocks usage>

NOT Gate Push-Back NOT_GATE_PUSH_BACK On/Off

Number of Inverted Registers
Reported in Synthesis Report

NUMBER_OF_INVERTED_REGISTERS_REPORTED <Maximum number of
inverted registers>

Number of Removed Registers
Reported in Synthesis Report

NUMBER_OF_REMOVED_REGISTERS_REPORTED <Maximum number of
inverted registers>

Optimization Technique <device family>_OPTIMIZATION_TECHNIQUE Area/Speed/ Balanced

Parallel Synthesis PARALLEL_SYNTHESIS On/Off

Table 9–9. Quartus II Synthesis Options (Part 2 of 3) (Note 1)

Setting Name Quartus II Settings File Variable Values

Chapter 9: Quartus II Integrated Synthesis 9–83
Scripting Support

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Assigning a Pin
Use the following Tcl command to assign a signal to a pin or device location:

set_location_assignment -to <signal name> <location>

For example: set_location_assignment -to data_input Pin_A3

Valid locations are pin location names. Some device families also support edge and
I/O bank locations. Edge locations are EDGE_BOTTOM, EDGE_LEFT, EDGE_TOP, and
EDGE_RIGHT. I/O bank locations include IOBANK_1 to IOBANK_n, where n is the
number of I/O banks in a particular device.

Creating Design Partitions for Incremental Compilation
To create a partition, use the following command:

set_instance_assignment -name PARTITION_HIERARCHY \
<file name> -to <destination> -section_id <partition name>

Perform WYSIWYG Primitive
Resynthesis

ADV_NETLIST_OPT_SYNTH_WYSIWYG_REMAP On/Off

PowerPlay Power Optimization OPTIMIZE_POWER_DURING_SYNTHESIS Normal compilation/
Extra effort/Off

Power-Up Don’t Care (2) ALLOW_POWER_UP_DONT_CARE On/Off

Remove Duplicate Registers REMOVE_DUPLICATE_REGISTERS On/Off

Remove Redundant Logic Cells
(2)

REMOVE_REDUNDANT_LOGIC_CELLS On/Off

Restructure Multiplexers MUX_RESTRUCTURE On/Off/Auto

Resource Aware Inference for
Block RAM

SYNTH_RESOURCE_AWARE_INFERENCE_FOR_
BLOCK_RAM

On/Off

Safe State Machine SAFE_STATE_MACHINE On/Off

SDC Constraint Protection SYNTH_PROTECT_SDC_CONSTRAINT On/Off

Show Parameter Settings Tables
in Synthesis Report

SHOW_PARAMETER_SETTINGS_TABLES_IN_
SYNTHESIS_REPORT

On/Off

State Machine Processing STATE_MACHINE_PROCESSING Auto/One-Hot/
Gray/Johnson/ Minimal

Bits/ Sequential/
User-Encoded

Strict RAM Replacement STRICT_RAM_RECOGNITION On/Off

Synthesis Effort (2) SYNTHESIS_EFFORT Auto/Fast

Timing Driven Synthesis SYNTH_TIMING_DRIVEN_SYNTHESIS On/Off

Use LogicLock Constraints during
Resource Balancing

USE_LOGICLOCK_CONSTRAINTS_IN_BALANCING On/Off

Notes to Table 9–9:

(1) These settings are supported as Global and Instance settings, unless specified.
(2) This setting is only a Global setting.

Table 9–9. Quartus II Synthesis Options (Part 3 of 3) (Note 1)

Setting Name Quartus II Settings File Variable Values

9–84 Chapter 9: Quartus II Integrated Synthesis
Conclusion

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

The <file name> is the name used for internally generated netlist files during
incremental compilation. If you create the partition in the Quartus II GUI, netlist files,
netlist files are named automatically by the Quartus II software based on the instance
name. If you are using Tcl to create your partitions, you must assign a custom file
name that is unique across all partitions. For the top-level partition, the specified file
name is ignored, and you can use any dummy value. To ensure the names are safe and
platform independent, file names must be unique regardless of case. For example, if a
partition uses the file name my_file, no other partition can use the file name
MY_FILE. For simplicity, Altera recommends that you base each file name on the
corresponding instance name for the partition.

The <destination> should be the entity’s short hierarchy path. A short hierarchy path is
the full hierarchy path without the top-level name, for example:
"ram:ram_unit|altsyncram:altsyncram_component" (with quotation
marks). For the top-level partition, you can use the pipe (|) symbol to represent the
top-level entity.

For more information about hierarchical naming conventions, refer to “Node-Naming
Conventions in Quartus II Integrated Synthesis” on page 9–73.

The <partition name> is the user-designated partition name, which must be unique
and less than 1024 characters long. The name can consist only of alphanumeric
characters, as well as pipe (|), colon (:), and underscore (_) characters. Altera
recommends enclosing the name in double quotation marks (" ").

Conclusion
The Quartus II software includes Verilog HDL, SystemVerilog, and VHDL language
support, as well as support for Altera-specific languages, making it an easy-to-use,
stand-alone solution for Altera designs. You can use the synthesis options in the
software or in your HDL code to better control the way your design is synthesized,
helping you improve your synthesis results. Use Quartus II reports and messages to
analyze your compilation results.

Referenced Documents
This chapter references the following documents:

■ Assignment Editor chapter in volume 2 of the Quartus II Handbook

■ Command-Line Scripting chapter in volume 2 of the Quartus II Handbook

■ Designing With Low-Level Primitives User Guide

■ Design Recommendations for Altera Devices and the Quartus II Design Assistant
chapter in volume 1 of the Quartus II Handbook

■ Introduction to the Quartus II Software

■ Managing Quartus II Projects chapter in volume 2 of the Quartus II Handbook

■ Netlist Optimizations and Physical Synthesis chapter in volume 2 of the Quartus II
Handbook

■ PowerPlay Power Analysis chapter in volume 3 of the Quartus II Handbook

http://www.altera.com/literature/manual/intro_to_quartus2.pdf
http://www.altera.com/literature/hb/qts/qts_qii52001.pdf
http://www.altera.com/literature/hb/qts/qts_qii52012.pdf
http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/ug/ug_low_level.pdf
http://www.altera.com/literature/hb/qts/qts_qii53013.pdf
http://www.altera.com/literature/hb/qts/qts_qii52007.pdf

Chapter 9: Quartus II Integrated Synthesis 9–85
Document Revision History

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

■ Quartus II Incremental Compilation for Hierarchical and Team-Based Design chapter in
volume 1 of the Quartus II Handbook

■ Quartus II Scripting Reference Manual

■ Quartus II Settings File Reference Manual

■ Recommended HDL Coding Styles chapter in volume 1 of the Quartus II Handbook

■ Tcl Scripting chapter in volume 2 of the Quartus II Handbook

Document Revision History
Table 9–10 shows the revision history for this chapter.

Table 9–10. Document Revision History (Part 1 of 2)

Date and Document
Version Changes Made Summary of Changes

December 2009
v9.1.1

■ Added information clarifying inheritance of Synthesis settings
by lower-level entities, including Altera and third-party IP

■ Updated “Keep Combinational Node/Implement as Output of
Logic Cell” on page 9–45

Added information to clarify
inherited option behavior.

November 2009
v9.1.0

■ Updated the following sections:

“Initial Constructs and Memory System Tasks” on page 9–6

“VHDL Support” on page 9–8

“Parallel Synthesis” on page 9–20

“Synthesis Directives” on page 9–26

“Timing-Driven Synthesis” on page 9–29

“Safe State Machines” on page 9–39

“RAM Style and ROM Style—for Inferred Memory” on
page 9–52

“Translate Off and On / Synthesis Off and On” on page 9–61

“Read Comments as HDL” on page 9–62

“Adding an HDL File to a Project and Setting the HDL
Version” on page 9–80

■ Removed “Remove Redundant Logic Cells” section

■ Added “Resource Aware RAM, ROM, and Shift-Register
Inference” section

■ Updated Table 9–9 on page 9–81

Updated for Quartus II software
version 9.1 release.

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://www.altera.com/literature/manual/TclScriptRefMnl.pdf

9–86 Chapter 9: Quartus II Integrated Synthesis
Document Revision History

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

March 2009 v9.0.0 ■ Updated Table 9–9.

■ Updated the following sections:

“Partitions for Preserving Hierarchical Boundaries” on
page 9–20

“Analysis & Synthesis Settings Page of the Settings Dialog
Box” on page 9–24

“Timing-Driven Synthesis” on page 9–30

“Turning Off Add Pass-Through Logic to Inferred RAMs/
no_rw_check Attribute Setting” on page 9–54

■ Added “Parallel Synthesis” on page 9–21

■ Chapter 9 was previously Chapter 8 in software version 8.1

Updated for Quartus II software
version 9.0 release.

November 2008
v8.1.0

■ Changed page size to 8.5” × 11”

■ Restructured chapter by rearranging sections

■ Updated Figure 8–1

■ Updated Table 8–9

■ Added Example 8–23 and Example 8–28

Updated for Quartus II software
version 8.1 release.

November 2008
v8.1.0

■ Updated the following sections:

“Setting Default Parameter Values and BDF Instance
Parameter Values”

“Incremental Compilation”

“Quartus II Synthesis Options”

“Limiting DSP Block Usage in Partitions”

“Synthesis Effort”

“Using altera_attribute to Set Quartus II Logic Options”

“Quartus II Messages”

■ Added the following sections:

“Quartus II Exported Partition (.qxp) File as Source”

“Auto Gated Clock Conversion”

“Timing-Driven Synthesis”

“SDC Constraint Protection”

Updated for Quartus II software
version 8.1 release.

May 2008
v8.0.0

■ Adjusted the items listed in “System Verilog Support”

■ Added the section “VHDL wait Constructs and associated
Examples”

■ Added the section “Limiting DSP Block Usage in Partitions”

■ Added the section “Synthesis Effort”

■ Added hyperlinks to referenced documents throughout the
chapter

■ Minor editorial updates

Updated for Quartus II software
version 8.0 release.

Table 9–10. Document Revision History (Part 2 of 2)

Date and Document
Version Changes Made Summary of Changes

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

	9. Quartus II Integrated Synthesis
	Introduction
	Design Flow
	Language Support
	Verilog HDL Support
	Verilog-2001 Support
	SystemVerilog Support
	Initial Constructs and Memory System Tasks
	Verilog HDL Macros

	VHDL Support
	VHDL Standard Libraries and Packages
	VHDL wait Constructs
	VHDL-2008 Support

	AHDL Support
	Schematic Design Entry Support
	State Machine Editor
	Design Libraries
	Specifying a Destination Library Name in the Settings Dialog Box
	Specifying a Destination Library Name in the Quartus II Settings File or Using Tcl
	Specifying a Destination Library Name in a VHDL File
	Mapping a VHDL Instance to an Entity in a Specific Library

	Using Parameters/Generics
	Setting Default Parameter Values and BDF Instance Parameter Values
	Passing Parameters Between Two Design Languages

	Incremental Compilation
	Partitions for Preserving Hierarchical Boundaries
	Parallel Synthesis
	Quartus II Exported Partition File as Source

	Quartus II Synthesis Options
	Setting Synthesis Options
	Analysis & Synthesis Settings Page of the Settings Dialog Box
	Quartus II Logic Options
	Synthesis Attributes
	Synthesis Directives

	Optimization Technique
	Auto Gated Clock Conversion
	Timing-Driven Synthesis
	SDC Constraint Protection
	PowerPlay Power Optimization
	Limiting DSP and RAM Block Usage in Partitions
	Restructure Multiplexers
	Synthesis Effort
	State Machine Processing
	Manually Specifying State Assignments Using the syn_encoding Attribute
	Manually Specifying Enumerated Types Using the enum_encoding Attribute
	Safe State Machines
	Power-Up Level
	Inferred Power-Up Levels

	Power-Up Don’t Care
	Remove Duplicate Registers
	Preserve Registers
	Disable Register Merging/Don’t Merge Register
	Noprune Synthesis Attribute/Preserve Fan-out Free Register Node
	Keep Combinational Node/Implement as Output of Logic Cell
	Disabling Synthesis Netlist Optimizations with dont_retime Attribute
	Disabling Synthesis Netlist Optimizations with dont_replicate Attribute
	Maximum Fan-Out
	Controlling Clock Enable Signals with Auto Clock Enable Replacement and direct_enable
	Megafunction Inference Control
	Multiply-Accumulators and Multiply-Adders
	Shift Registers
	RAM and ROM
	Resource Aware RAM, ROM, and Shift-Register Inference
	RAM to Logic Cell Conversion

	RAM Style and ROM Style—for Inferred Memory
	Turning Off the Add Pass-Through Logic to Inferred RAMs no_rw_check Attribute
	RAM Initialization File—for Inferred Memory
	Multiplier Style—for Inferred Multipliers
	Full Case
	Parallel Case
	Translate Off and On / Synthesis Off and On
	Ignore translate_off and synthesis_off Directives
	Read Comments as HDL
	Use I/O Flipflops
	Specifying Pin Locations with chip_pin
	Using altera_attribute to Set Quartus II Logic Options
	Verilog HDL
	VHDL

	Analyzing Synthesis Results
	Analysis and Synthesis Section of the Compilation Report
	Project Navigator

	Analyzing and Controlling Synthesis Messages
	Quartus II Messages
	VHDL and Verilog HDL Messages
	Setting the HDL Message Level
	Enabling or Disabling Specific HDL Messages by Module/Entity

	Node-Naming Conventions in Quartus II Integrated Synthesis
	Hierarchical Node-Naming Conventions
	Node-Naming Conventions for Registers (DFF or D Flipflop Atoms)
	Register Changes During Synthesis
	Synthesis and Fitting Optimizations
	State Machines
	Inferred Adder-Subtractors, Shift Registers, Memory, and DSP Functions
	Packed Input and Output Registers of RAM and DSP Blocks

	Preserving Register Names
	Node-Naming Conventions for Combinational Logic Cells
	Preserving Combinational Logic Names

	Scripting Support
	Adding an HDL File to a Project and Setting the HDL Version
	Quartus II Synthesis Options
	Assigning a Pin
	Creating Design Partitions for Incremental Compilation

	Conclusion
	Referenced Documents
	Document Revision History

